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Abstract

Data-based methods, in particular deep learning methods, have been
successfully applied to solve various inverse problems. In medical imaging,
for example in computed tomography (CT) or magnetic resonance imaging
(MRI), deep learning methods have been developed that can lead to a
remarkable increase in image quality. During my doctoral studies, I analyzed
and developed various deep learning methods for image reconstruction with
a focus on the use of invertible neural networks. Invertible neural networks
form the basis for the implementation of generative normalizing �ows.
Furthermore, I participated in data challenges to apply and validate these
and other novel deep learning methods to real-world problems.

This work consists of six publications. In the �rst works, the application
of invertible networks to approximate both prior and posterior distributions
in the context of medical imaging problems is investigated. In the Helsinki
Tomography Challenge, we evaluated di�erent approaches for CT image
reconstruction on a real data set and achieved second place. Also, we
investigated the application of score-based di�usion models, as an extension
of the generative models in the other publications, to CT and MR
image reconstruction. In particular, we developed methods to deal with
discrepancies between the training and test distributions. In addition, we
have made necessary adaptations for the application of these methods to
positron emission tomography image reconstruction.

The necessary background is presented in the �rst part of the thesis, where
the application and construction of invertible neural networks are discussed.
Furthermore, the connection between normalizing �ows and score-based
di�usion models is drawn.
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Zusammenfassung

Datenbasierten Methoden, insbesondere Deep Learning Methoden, wurden
in den letzten Jahren erfolgreich zur Lösung von verschiedenen Inversen
Problemen angewendet. In der medizinischen Bildgebung, zum Beispiel in
der Computertmographie (CT) oder Magnetresonanztomographie (MR),
wurden Methoden entwickelt, die zu einer bemerkenswerten Steigerung der
Bildqualität führen können. In meiner Promotion habe ich verschiedene Deep
Learning Methoden zur Bildrekonstruktion analysiert und entwickelt. Mein
Fokus lag in der Analyse von invertierbaren neuronalen Netzen. Invertierbare
neuronale Netze bilden die Grundlage für die Implementation von generativen
Normalizing Flows. Des weiteren habe ich an verschiedenen Challenges
teilgenommen, um diese neuartigen Deep Learning Methoden auf reale
Problemstellungen anzuwenden und zu validieren.

Diese Arbeit besteht aus sechs Verö�entlichungen. In den ersten
beiden Arbeiten wird die Anwendung von invertierbaren Netzwerken zur
Approximation von a-posteriori Verteilungen im Kontext von verschiedenen
medizinischen Bildgebungsproblemen untersucht. Zusätzlich haben wir an
der Implementierung von invertierbaren Netzwerken zur Approximation
der a-priori Verteilung gearbeitet. In der Helsinki Tomographie Challenge
haben wir verschiedenen Ansätze für die CT-Rekonstruktion auf einem
realen Datensatz ausgewertet und den zweiten Platz erreichen können.
In dem letzten Abschnitt haben wir die Anwendung von Score-basierten
Di�usionsmodellen, als Erweiterung der generativen Modelle in den
anderen Verö�entlichungen, auf CT-Rekonstruktion und MR-Rekonstruktion
untersucht. Insbesondere wurden Methoden für den Fall einer Diskrepanz
der Training- und Testverteilung entwickelt. Auÿerdem haben wir
notwendige Anpassungen für die Anwendung dieser Methoden auf
Positronen-Emissions-Tomographie vorgenommen.

Zusätzlich wird im ersten Teil der Arbeit der notwendige Hintergrund
präsentiert. Hier wird insbesondere auf die Anwendung und Konstruktion
von invertierbaren neuronalen Netzwerken eingegangen. Weiterhin wird die
Verbindung von Normalizing Flows und Score-basierten Di�usionsmodellen
untersucht.
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Introduction

Motivation

The task in inverse problems is to reconstruct unknown parameters based
on indirect, noisy measurements. Inverse problems arise in a wide variety of
scienti�c and technical applications. In particular, medical imaging relies
on a stable solution of these inverse problems, for example in computed
tomography or magnetic resonance imaging. The integration of data-based
methods into the reconstruction process has led to signi�cant advances in
recent years. In addition to a single point estimate for the solution, we are
interested in quantifying the uncertainty of this estimate. Deep generative
models are a promising tool for this task. Here, my research focuses on
two methods based on the theory of optimal transport: normalizing �ows
and score-based generative models. First, we worked on the construction
of normalizing �ows with invertible neural networks. Enforcing invertiblity,
while still retaining �exibility, is a hard problem. During my doctoral studies,
I explored various methods to construct �exible invertible neural networks.

Generative models, like normalizing �ows, can be used to approximate
the prior or posterior distribution based on available data. Recently,
score-based di�usion models, have received a large amount of attention,
due to their outstanding performance in many imaging domains. In contrast
to normalizing �ows, the neural network architectures used to implement
di�usion models are not required to be invertible. This �exibility allows for
a more simple design of di�usion models and modern network architectures
can be integrated more easily. Still, speci�cally in the application to inverse
problems, various challenges remain. In this thesis, we tackle two of these:
distribution shifts and necessary adaptations for application to positron
emission tomography.
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Contribution

This cumulative thesis is based on the following papers (organised
chronologically):

Conditional Normalizing Flows for Low-Dose Computed

Tomography Image Reconstruction

Alexander Denker, Maximilian Schmidt, Johannes Leuschner, Peter Maass,
Jens Behrmann
Second workshop on Invertible Neural Networks, Normalizing Flows, and

Explicit Likelihood Models (ICML), (2020).
I had the idea for the project, did most of the implementation and did the
majority of the writing of the paper.

Conditional Invertible Neural Networks for Medical Imaging

Alexander Denker, Maximilian Schmidt, Johannes Leuschner, Peter Maass
Journal of Imaging, 7(11):243, (2021). DOI: 10.3390/jimaging7110243
The idea was formed in discussions with Maximilian Schmidt and Johannes
Leuschner. I am responsible for the magnetic resonance experiments and most
of the computed tomography experiments.

PatchNR: Learning From Very Few Images by Patch Normalizing

Flow Regularization

Fabian Altekrüger, Alexander Denker, Paul Hagemann, Johannes Hertrich,
Peter Maass, Gabriele Steidl
Inverse Problems, 39(6):064006, (2023). DOI: 10.1088/1361-6420/acce5e
The idea was formed during my visit to the group of Professor Steidl. I
am responsible for parts of the analysis and implementation regarding the
computed tomography experiments and baseline methods. I contributed to
the writing of the paper.

Model-based Deep Learning Approaches to the Helsinki

Tomography Challenge 2022

Clemens Arndt, Alexander Denker, Sören Dittmer, Johannes Leuschner,
Judith Nickel, Maximilian Schmidt1

Applied Mathematics for Modern Challenges, (2023).
DOI: 10.3934/ammc.2023007
It was my idea to take part in the challenge. I am responsible for the
implementation and estimation of the forward operator, most of the creation
of the synthetic dataset, and the implementation and training of the modi�ed
learned primal-dual method, which scored second place in the challenge.
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LIST OF TABLES

Steerable Conditional Di�usion for Out-of-Distribution Adaptation

in Imaging Inverse Problems

Riccardo Barbano, Alexander Denker, Hyungjin Chung, Tae Hoon Roh,
Simon Arrdige, Peter Maass, Bangti Jin, Jong Chul Ye
submitted to AAAI, under review.
The idea was formed with Riccardo Barbano during my research stay at
the group of Professor Arridge. Riccardo Barbano and I did the initial
implementation and are equally responsible for the computed tomography
experiments. Riccardo Barbano, Hyungjin Chung and I have contributed
equally to the work.

Score-Based Generative Models for PET Image Reconstruction

Imraj RD Singh, Alexander Denker, Riccardo Barbano, �eljko Kereta,
Bangti Jin, Kris Thielemans, Peter Maass, Simon Arridge
submitted to MELBA, under review.
The idea was formed in discussions during my research stay at the group
of Professor Arridge at UCL. Riccardo Barbano and worked on the initial
implementation of the score model. Imrah Singh and I are responsible for
running and designing the experiments and the PET-speci�c modi�cations.
Imraj Singh, Riccardo Barbano, and I have contributed equally to the work.

1Alphabetical author order
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Furthermore, I co-authored the following papers (organized chronologically):

Quantitative Comparison of Deep Learning-based Image

Reconstruction Methods for Low-dose and Sparse-angle CT

Applications

Johannes Leuschner and Maximilian Schmidt and Poulami S. Ganguly,
Vladyslav Andriiashen, Vladyslav, Sophia B. Coban, Alexander Denker,
Dominik Bauer, Amir Hadjifaradji, Kees J. Batenburg, Peter Maass,
Maureen van Eijnatten
Journal of Imaging, 7(3):44, (2021). DOI: 10.3390/jimaging7030044
I am responsible for the experiments regarding the conditional invertible
neural network and the learned iterative methods. Further, I helped write
the paper.

The Deep Capsule Prior�Advantages Through Complexity?

Maximilian Schmidt, Alexander Denker, Johannes Leuschner
PAMM, 21(1), (2021). DOI: 10.1002/pamm.202100166
I am responsible for the deep image prior baseline experiments and some of
the deep capsule prior experiments. Further, I helped write the paper.

In Focus-hybrid Deep Learning Approaches to the HDC2021

Challenge

Clemens Arndt, Alexander Denker, Judith Nickel, Johannes Leuschner,
Maximilian Schmidt, Gael Rigaud1

Inverse Problems and Imaging, (2022). DOI: 10.3934/ipi.2022061
It was my idea to tackle the challenge using a synthetic training dataset. I
implemented the synthetic training dataset. Johannes Leuschner and myself
worked on the estimation of the forward operator. I implemented the modi�ed
learned gradient descent method and the training routine.

An Educated Warm Start For Deep Image Prior-Based Micro CT

Reconstruction

Riccardo Barbano, Johannes Leuschner, Maximilian Schmidt,
Alexander Denker, Andreas Hauptmann, Peter Maass, Bangti Jin
IEEE Transactions on Computational Imaging, (2022).
DOI: 10.1109/TCI.2022.3233188
I was responsible for deep image prior baseline experiments and helped with
the writing of the paper.
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Invertible Residual Networks in the Context of Regularization

Theory for Linear Inverse Problems

Clemens Arndt, Alexander Denker, Sören Dittmer, Nick Heilenkötter, Meira
Iske, Tobias Kluth, Peter Maass, Judith Nickel1

Inverse Problems, (2023). DOI: 10.1088/1361-6420/ad0660
I am responsible for parts of the analysis concerning the specialized
architectures and the initial numerical experiments.

Thesis Overview

Chapter 1 provides the necessary background for inverse problems and deep
learning. Speci�cally, Section 1.4 introduces various concepts of applying deep
learning to inverse problems. Chapter 2 focuses on invertible neural networks,
with an emphasis on generative modeling and normalizing �ows. Additionally,
in Section 2.4, the link between normalizing �ows and the recently introduced
score-based di�usion models is explored.

My own work will be cited in red, for example [23], whereas other sources
are cited in blue, for example [1].
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Part I

Background





Chapter 1

Inverse Problems and Deep

Learning

The goal in inverse problems is to recover a parameter of interested
from indirect and noisy measurements. Inverse problems arise naturally in
many scienti�c applications. For example, many medical imaging tasks, like
computed tomography (CT), magnetic resonance imaging (MRT) or positron
emission tomography (PET), can be formulated as inverse problems. In these
di�erent imaging modalities, we want to reconstruct an image of the interior
of the human body from indirect measurements. For example in CT, the
parameter of interest is the density and the measurements correspond to
the attenuation of x-rays, which are shot through the body from various
angles [146]. These three medical imaging modalities are examples of linear
inverse problems, which will be the focus of this thesis. In particular, we will
mostly focus on inverse problem in imaging, where the parameter of interest
is an image. In a linear inverse problem, we want to recover the image x ∈ X
using noisy data yδ ∈ Y given by

yδ = Ax+ η, (1.1)

where A : X → Y is a linear forward operator and η ∈ Y denotes
measurement noise. In Eqn. (1.1), we highlight the case of additive noise.
In many important applications, the inverse problem (1.1) will be ill-posed,
in the sense that no unique solution exists, the reconstruction is highly
susceptible to noise, or both, see for example [65, 140, 177]. To handle
ill-posedness, the inverse problem needs to be regularized. With the advent
of deep learning models, data-driven regularization methods have become
increasingly popular, see for example the review [16], and several novel
data-driven methods will be discussed in this chapter.
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Chapter 1 Inverse Problems and Deep Learning

In this chapter, we start with a short presentation of inverse problems,
where we follow the work of Rieder [165]. We will cover both the functional
analytic and the statistical approach to solving inverse problems. This is
followed by an introduction to deep learning and deep neural networks, with
a focus on imaging applications. In the last part of the chapter, we deal with
di�erent applications of deep learning models to inverse problems.

1.1 Inverse Problems

In this section, we discuss the theory of linear inverse problems and
cover regularization techniques for a stable recovery of reconstructions. The
prototypical inverse problem is de�ned as follows.

De�nition 1.1 (Inverse problem). The measurements y ∈ Y follow an

observation model

y = Ax,

where A : X → Y maps from the set of all possible images X to the set of

all possible measurements Y. The inverse problem is de�ned by

Given y ∈ Y , �nd x ∈ X such that y = Ax.

In this thesis, we only consider bounded linear operators A : X → Y
between Hilbert spaces. However, there exist also a rich theory of inverse
problems in Banach spaces [178].

1.1.1 Ill-posedness and Regularization Theory

The de�nition of well-posed problems goes back to Hadamard [81]. A problem
is well-posed, if and only if three conditions hold: 1) the problem has a
solution, 2) the solution is unique and 3) the solution changes continuously
with the data. Adapted to inverse problems, we arrive at the following
de�nition of well-posedness.

De�nition 1.2 (Well-posedness (Hadamard)). Let A : X → Y. The problem
�nd x ∈ X s.t. Ax = y for y ∈ Y

is called well-posed according to Hadamard, if and only if

1) ∀y ∈ Y ∃x ∈ X : Ax = y (solvability)

10



1.1 Inverse Problems

2) ∀y ∈ Y ∃!x ∈ X : Ax = y (uniqueness)

3) A−1 : Y → X is continuous with respect to the norm in X ,Y (stability).

If one of these conditions is violated, the problem is ill-posed according to

Hadamard.

The three conditions can be expressed in terms of the forward operatorA.
Solvability requires a surjective and uniqueness an injective operator A. To
ful�ll the stability condition it is necessary for the inverse A−1 to exist and
to be continuous.

We can deal with non-surjective or non-injective operators by broadening
the de�nition of a solution. If the operator A is not surjective, there
exist y /∈ Range(A) for which we cannot �nd a x that exactly maps to y.
To handle this scenario, we use a Best-approximation, de�ned as the image x
such that Ax is closest to y with respect to the norm used in Y .

De�nition 1.3 (Best-approximation). x ∈ X is a Best-approximation if and

only if

∥Ax− y∥Y ≤ ∥Ax̃− y∥Y ∀x̃ ∈ X .
If both X and Y are Hilbert spaces, we refer to x as the least-squares solution.

If the forward operator A is not injective, there might be several elements
mapping to the same y and the Best-approximation is not unique. We need
an additional criterion to select a unique solution. Here, the Moore-Penrose
solution, also referred to as Minimum-Norm solution, is commonly used.

De�nition 1.4 (Moore-Penrose solution). x ∈ X is the Moore-Penrose

solution (Minimum-Norm solution) if and only if x is a Best-approximation

and ∥x∥X ≤ ∥x̃∥X for all Best-approximations x̃. We denote the

Moore-Penrose inverse as A† : Range(A)⊕ Range(A)⊥ ⊂ Y → X .

The Moore-Penrose solution is de�ned as the Best-approximation
with minimum norm. This de�nition of a solution handles the case of
non-injective or non-surjective forward operators. However, the domain of
the Moore-Penrose inverse is a subset of Y if the Range(A) is not closed.
Thus, the Moore-Penrose inverse is only continuous if the range of A is
closed. This range criterion is used by Nashed to characterize ill-posed inverse
problems [65, 165]. For compact operators, we can characterize ill-posedness
using the singular value decomposition. For ill-posed inverse problems, the
forward operator has singular values σi which converge to 0. Further, the
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Chapter 1 Inverse Problems and Deep Learning

decay rate of singular values can be used as a measure of ill-posedness. The
singular values of A† are given as σ−1

i , i.e., a decay of the singular values
of A can lead to unbounded singular values for A†, see the Picard condition
(for example in [165, Theorem 2.3.7]).

For real-world data, the measurements are corrupted by noise and thus we
only have access to yδ = y+η with ∥η∥Y ≤ δ and δ is the noise level. Applying
the Moore-Penrose inverse to the noisy data yδ leads to ampli�cation of the
noise by σ−1

i in the direction of the respective singular vector. The noise
ampli�cation makes A†yδ generally unusable in practice.

To deal with the noise ampli�cation, the reconstruction process has to
be stabilized, referred to as regularization [17, 140, 201]. Let {Rα}α>0 be
a family of bounded linear operators that approximate the Moore-Penrose
inverse for α → 0. The parameter α is referred to as the regularization
parameter and can depend on the noisy measurements or the noise level,
i.e., α = α(yδ, δ). The reconstruction Rα(yδ,δ)(y

δ) is then used in place
of the Moore-Penrose solution. The resulting reconstruction error can be
decomposed into two terms

∥A†y −Rαyδ∥X ≤ ∥A†y −Rαy∥X + ∥Rα(y − yδ)∥X , (1.2)

where the �rst part is referred to as the approximation error and the second
part is governed by the noise level. In general, the �rst part converges to
zero as α → 0 and the second part is small for α → ∞. This means, that
we have to choose a suitable regularization parameter α to balance both
types of errors. There exists a plethora of parameter choice strategies either
dependent on the noise level, the noisy measurements, or both.

A particularly powerful and �exible approach to regularization is
variational regularization [28, 177]. In variational regularization, the
reconstruction is obtained by solving an optimization problem

Rα(yδ) = argmin
x∈X

d(Ax,yδ) + αS(x), (1.3)

with a data discrepancy functional d : Y × Y → R≥0 and S : X → R≥0

is a regularization functional with a regularization parameter α. The data
discrepancy functional measures the closeness of the reconstruction to
the measured data, whereas the regularization functional promotes desired
features of the solution. Variational regularization has generalized many other
well-established regularization methods. For example, the famous Tikhonov
regularization [201] can be formulated as a variational problem

Rα(yδ) = argmin
x∈X

1

2
∥Ax− yδ∥2X + α

1

2
∥x∥2X . (1.4)

12



1.1 Inverse Problems

Variational regularization o�ers a �exible approach to modeling the
reconstruction process, as both the data discrepancy term and the
regularization can be modeled independently. In particular for convex
regularizers S : X → R≥0

Rα(yδ) = argmin
x∈X

∥Ax− yδ∥2X + αS(x), (1.5)

variational regularization o�ers a rich theory, i.e., uniquess of a solution or
convergence rates. Further, there exist extensions to Banach spaces [178] and
to nonlinear forward operators [64].

1.1.2 Statistical Inverse Problems

In the statistical view on inverse problems, both the image x and
the measurements y are modeled as random variables. Instead of
recovering a single reconstruction, the goal is to estimate the posterior

distribution ppost(x|y), i.e., the conditional distribution of images x given
measurements y [68, 103, 197]. Access to the posterior allows for uncertainty
quanti�cation. Besides a single point estimate, we can provide the variance
or con�dence intervals of the solution. This is especially useful in medical
imaging problems, where it can help clinical decision-making, for example
informing the decision if a part of an image is a reconstruction artifact or
corresponds to a lesion [5]. The statistical formulation further comes with
desirable theoretical properties. For example, the statistical inverse problem
can be well-posed with respect to distances in probability space, even if it
is ill-posed in the functional analytic framework [117]. Moreover, in many
examples, the posterior will concentrate around the true solution, if the noise
level goes to zero [147].

The foundation for modeling statistical inverse problems is given by
Bayes' theorem. For this thesis, we will stick to �nite-dimensional inverse
problems and assume that all random variables admit a (Lebesgue) density.
We therefore denote both the density and the probability distribution
with that density with p(·). However, there exists a rich theory for
in�nite-dimensional inverse problems, for example in the reviews [49] or [193].
In the �nite-dimensional setting, we can give Bayes' theorem in the following
form

ppost(x|y) = plkhd(y|x)π(x)
p(y)

. (1.6)

The relationship between measurements y and images x is governed by the
likelihood plkhd(y|x), which is the statistical analogue of the forward model
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in Eqn. (1.1). The prior π(x) describes prior information about the solution
before we get any measurements. The term p(y) is denoted as the evidence
and has applications in Bayesian model selection [127], see [21] for an example
of selecting the angles in CT. For all sampling and optimization tasks in this
thesis, the evidence does not need to be evaluated. Therefore we write

ppost(x|y) ∝ plkhd(y|x)π(x). (1.7)

Similar to variational regularization, Bayes' theorem o�ers a �exible approach
to modeling by choosing likelihood and prior independently. One of the most
common likelihood models is given by the additive noise model

y = Ax+ η, (1.8)

with a deterministic linear forward operator A and the noise η ∼ pη(η)

follows some pre-speci�ed distribution [16]. For this modeling approach, the
likelihood reduces to

plkhd(y|x) = pη(y −Ax). (1.9)

With a Gaussian noise model pη ∼ N (0, σ2I), the negative log-likelihood

− log plkhd(y|x) = 1

2σ2
∥Ax− y∥22 + constant, (1.10)

can be interpreted as a data-discrepancy term, similar to the squared error.
Statistical estimation techniques, which only rely on the likelihood, su�er
from the ill-posedness of the inverse problem. In the setting of i.i.d. Gaussian
noise, the maximum likelihood estimator xML is given by

xML := argmax
x∈Rn

log plkhd(y|x) = argmin
x∈Rn

∥y −Ax∥22, (1.11)

and admits the same solution and stability issues as unregularized least
squares. Thus, estimators based on the full posterior are generally preferred.
In high-dimensional imaging problems, it is not possible to visualize the full
posterior and we have to rely on point or interval estimates [103]. Two of the
most common estimators for Bayesian inference are the maximum a posteriori
(MAP) estimator

xMAP := argmax
x∈Rn

log ppost(x|y), (1.12)

and the conditional mean (CM)

xCM := Ex∼ppost(x|y)[x] =

∫︂
Rn

x ppost(x|y)dx. (1.13)

Taking a closer look at the MAP estimator, we see a strong link to variational
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regularization. Bayes' theorem allows us to rewrite the MAP estimator as

xMAP = argmin
x∈Rn

− log plkhd(y|x)− log π(x). (1.14)

In the setting of additive Gaussian noise and a Gibbs prior

π(x) ∝ exp
(︁
−λ∥Lx∥22

)︁
, (1.15)

where LTL is a positive de�nite matrix, the MAP reduces to

xMAP = argmin
x∈Rn

1

2σ2
∥Ax− y∥22 + λ∥Lx∥22, (1.16)

which is equivalent to generalized Tikhonov regularization [177], see also
Eqn. (1.4). This highlights the fact that the prior can take the role of a
regularizer. Besides the CM, other moments of the posterior are also of
interest. For example, the point-wise standard deviation is often used for
uncertainty quanti�cation in imaging problems. Estimating moments requires
computations of expectations of the form

Ex∼ppost(x|y)[g(x)] =

∫︂
Rn
g(x)ppost(x|y)dx, (1.17)

for di�erent functions g : Rn → R, e.g., g(x) = (xCM,i−xi)
2 for the pointwise

conditional variance for the ith component of x. Computing this expectation
requires the evaluation of a high-dimensional integral, which is intractable
using standard numerical integration techniques. Instead, the expectation is
estimated using Monte Carlo methods

Ex∼ppost(x|y)[g(x)] ≈
1

N

N∑︂
i=1

g(x(i)), x(i) ∼ ppost(x|y). (1.18)

Monte Carlo estimators show a slow convergence rate of O(N−1/2), using the
law of large numbers [111], but crucially are independent of the dimension of
the image n and thus do not su�er from the curse-of-dimensionality. Howver,
computing the Monte Carlo estimator requires samples of the posterior.

Sampling from the Posterior There are two main families of methods
for sampling from the posterior distribution: Markov Chain Monte Carlo
(MCMC) [71] and Variational Inference (VI) [31].

MCMC de�nes an iterative sampling procedure with the posterior as the
stationary distribution. For high-dimensional imaging problems, Langevin
MCMC is one of the most used variants [155, 118] and has extensions
to incorporate non-di�erentiable priors like total variation [154]. However,
MCMC methods often require a large number of iterations to converge.
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In contrast, VI frames the sampling problem as an optimization problem.
Let {pθ|θ ∈ Θ} be a family of probabilistic models. We often require that
these models are tractable, which means that they allow for e�cient sampling,
likelihood computation, or both. Then, the probabilistic model pθ(x)

that best approximates the posterior is identi�ed. A common choice, to
measure the di�erence between pθ(x) and the posterior ppost(x|y), is the
Kullback-Leibler (KL) [116] divergence

DKL(pθ(x)||ppost(x|y)) = Ex∼pθ(x)

[︃
log

pθ(x)

ppost(x|y)

]︃
= Ex∼pθ(x)[− log ppost(x|y) + log pθ(x)].

(1.19)

Using Bayes' theorem for the posterior and dropping all terms independent
of θ, the goal in VI is to recover

θ̂ = argmin
θ∈Θ

Ex∼pθ(x)[− log plkhd(y|x)− log π(x) + log pθ(x)], (1.20)

and use samples from the variational model pθ̂(x) as a surrogate for samples
from the true posterior. The optimization has to be performed for every
new measurement y, which makes VI costly in applications where evaluating
the forward operator and likelihood is expensive [181]. In amortized VI, we
instead learn a conditional variational model pθ(·|y), which minimizes the
expected KL divergence over measurements y [108, 131, 150]. The class of
probabilistic models {pθ|θ ∈ Θ} is critical for the success of VI and amortized
VI. In Chapter 2, we will discuss how normalizing �ows, based on invertible
neural networks, can be used for VI. Both MCMC sampling and VI require
access to an analytical formulation of both the likelihood and the prior.

The likelihood is given by the knowledge about the physics of the
system and the noise model. However, the choice of a suitable prior is not
as straightforward. The prior aims at encoding existing knowledge about
the solution and can signi�cantly in�uence the posterior and all estimates
determined from it. A promising method is to choose the prior empirically
given data, see for example [63]. In the next sections, we will discuss methods
of learning a prior from data.

1.2 Deep Learning

Deep learning is a sub�eld of machine learning, which studies the questions
of how machines or programs can learn from data [75, 158]. Many modern
machine learning algorithms are implemented using neural networks. Deep
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learning refers to the use of neural networks with a large number of trainable
parameters and a large number of so-called layers. From a mathematical
perspective, deep learning o�ers an interesting combination of concepts from
statistical learning, data analysis, and optimization theory.

In this section, we give a short introduction to statistical learning
theory, the theoretical framework underpinning deep learning. Next, we will
introduce feedforward neural networks and training algorithms. Lastly, we
will cover convolutional neural networks, a network architecture speci�cally
designed to work with images.

1.2.1 Statistical Learning Theory

Statistical learning deals with the principles behind learning from data

and forms the basis of machine learning theory, see e.g. [84, 206]. In
statistical learning theory, learning from data is framed as a function
estimation problem. In the case of supervised learning, we have access to
a dataset {x(i),y(i)}Ni=1 of inputs x(i) ∈ X and labels y(i) ∈ Y and want to
�nd a function f̂ : X → Y such that f̂(x(i)) ≈ y(i) for all i = 1, . . . , N .
Assume, in a general setting that we have access to the full joint probability
distribution p(x,y) of inputs x and labels y. The goal of statistical learning
is to �nd a function f ∈ H such that the risk

Lp(x,y)(f) = Ex,y∼p(x,y)[ℓ(f, (x,y)] (1.21)

is minimized, where ℓ : H× (X × Y) → R≥0 is a loss function and H
is the hypothesis space. The hypothesis space is the search space and
elements f ∈ H are called models. The loss function ℓ measures the
discrepancy between the model output and the label and is de�ned for
the task at hand. For regression tasks, for example, arising in image
reconstruction, the loss function is usually chosen as the mean squared error.
For image segmentation or classi�cation, a cross-entropy loss function is
employed.

In general, the risk in Eqn. (1.21) can not be computed as the
joint distribution is unknown. Instead, the principle of empirical risk
minimization (ERM) is employed

f̂ERM = argmin
f∈H

{︄
Lemp(f) =

1

N

N∑︂
i=1

ℓ
(︁
f, (x(i),y(i))

)︁}︄
, (1.22)

where Lemp(f) is the empirical estimate of the risk.
There are two common failure modes associated with empirical risk
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minimization and the hypothesis class H. The �rst is under�tting, i.e.,
no model in H can represent the relationship of inputs and labels. The
second failure mode is called over�tting. For over�tting, the model f̂ERM
achieves a low empirical risk, but the risk Lp(x,y)(f̂ERM) is not minimized,
i.e., Lp(x,y)(f̂ERM) ≫ Lemp(f̂ERM). Cross-validation techniques can be
employed to diagnose over�tting [141, 192]. However, cross-validation
requires the retraining of the model on di�erent subsets of the data and is thus
computationally expensive for large deep learning models. Instead, in deep
learning the dataset is split into two parts; a training dataset and a validation
dataset [75]. The training dataset is used for empirical risk minimization
and the loss on the validation dataset is tracked to estimate generalization
capabilities and diagnose over�tting. Generalization capabilities depend
crucially on the choice of the hypothesis class [139]. The hypothesis class
can be restricted to include prior knowledge, referred to as inductive bias. In
image classi�cation tasks, the label y is often independent of the rotation of
the image x. This information can be encoded in the hypothesis class, for
example through the use of group equivariant convolutions, see [46]. Another
way to tackle over�tting is to introduce regularisation terms to the ERM
objective [169].

Besides supervised learning, there exist many other learning tasks [75].
Important for this thesis is unsupervised learning, where only inputs {x(i)}Ni=1

without the associated labels are provided. Typical tasks here include
generative modeling, which will be discussed in Section 1.3, dimensionality
reduction, or clustering. Various learning tasks arising in solving inverse
problems will be presented in Section 1.4.

1.2.2 Feedforward Neural Networks

The prototypical example of a neural network is the feedforward neural
network, without any recurrent connections. Feedforward neural networks
are composed of several building blocks, referred to as layers [75]. Each
layer consists of an a�ne linear transformation and a non-linear activation
function σ : R → R. The linear transformation has learnable parameters,
called weights and biases. For a fully-connected network, a single layer
is de�ned as follows. Let hl ∈ Rdl be the input to the l-th layer, the
output hl+1 ∈ Rdl+1 is given by

hl+1 = Φl(hl) =: σ(Wlhl + bl), (1.23)
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where σ : Rdl+1 → Rdl+1 is de�ned by

σ(h) = (σ(h1), . . . , σ(hdl+1
)), h ∈ Rdl+1 , (1.24)

and denotes the pointwise application of the activation function σ. The
weights Wl are a dl+1 × dl matrix and the bias bl ∈ Rdl+1 is a vector.
Thus, a single fully connected layer has dl+1dl+dl learnable parameters. The
activation function σ is usually �xed. One of the most widely used activation
functions is the recti�ed linear unit (ReLU) [145] de�ned by

σ(x) =

{︄
x, if x ≥ 0

0, otherwise
. (1.25)

A fully-connected neural network with L layers is de�ned by iteratively
stacking the layers in Eqn. (1.23) as

Φ1(x) = σ1(W1x+ b1),

Φl+1(x) = σl+1(Wl+1Φl(x) + bl+1), for l = 1, . . . , L− 1,
(1.26)

and f(x, θ) := ΦL(x) is the �nal output of the neural network with
parameters θ = (W1,b1, . . . ,WL,bL). The �rst layer Φ1 is called the input
layer, the last layer ΦL the output layer and the intermediate layers are called
hidden layers.

1.2.3 Training a Neural Network

Training a neural network involves minimizing the empirical risk, typically
with the inclusion of regularization terms. However, the training problem
di�ers from classical optimization problems in some important aspects.
Since the empirical risk serves only as a surrogate for the actual risk, it
is not necessary to minimize the empirical risk exactly. Often, early stopping
rules are applied based on the empirical risk of a held-out validation set.
Consequently, training may be stopped even if the gradients of the empirical
risk are still large (see for example Section 8 in [75]).

The empirical risk in Eqn. (1.22) decomposes into a sum over all training
examples. Due to the linearity, computing the gradient of the empirical
risk requires evaluating the network for all examples in the dataset. This
is prohibitive for large datasets with thousands or even millions of data
points. For training deep learning models stochastic gradient descent (SGD)
methods are preferred [66, 75]. For SGD, the gradient of the empirical risk
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is approximated by

1

N

N∑︂
i=1

∇θℓ(fθ, (x
(i),y(i))) ≈ 1

M

∑︂
i∈B

∇θℓ(fθ, (x
(i),y(i))), (1.27)

where M = |B| is called the batch size and B ⊂ {1, . . . , N} the batch,
randomly drawn from the full training dataset. The term stochastic in
this context refers to the fact that the gradient of the empirical risk is
approximated using a random subset of the full dataset. Besides saving
computational cost, SGD has some interesting theoretical properties. Under
some assumptions, SGD can have the same convergence rate as methods
making use of the gradient of the full dataset [171]. It has been observed in
experiments, that SGD often leads to a better generalization error and faster
convergence with respect to the total computational cost of the training
algorithm [213]. Further, the estimation using a subset of the full dataset is
also motivated by the fact that we can expect a correlation between examples
in large-scale datasets, e.g., in a classi�cation task we might have two very
similar images of the same object. The update rule for SGD is given by

θk+1 = θk − γk
1

M

∑︂
i∈Bk

∇θℓ(fθ, (x
(i),y(i))), (1.28)

where the batch Bk is randomly chosen for each update and γk > 0 is
the learning rate. The gradient of the loss function for each example is
computed using the backpropagation algorithm [167], which is an e�cient
way for computing the gradients in a neural network. A common extension
of the update rule in Eqn. (1.28) is to include momentum terms or use
adaptive learning rates, for example, resulting in the widely used Adam
algorithm [106].

1.2.4 Convolutional Neural Networks

A digital or discrete image of size d× d is de�ned as a tensor x = (xi,j,k)i,j,k
with i, j = 1, . . . , d as the spatial dimensions and k = 1, . . . , c representing
intensity channels [177]. Later, we often work with vectorized images,
i.e. x ∈ Rn with n = d2k. For RGB images, the number of channels c = 3

represents red, green, and blue intensity values and for grayscale images c = 1

represents the gray value, usually between 0 and 1. Many medical images
can be represented as grayscale images, for example in CT the grayscale
value encodes the density at the speci�c pixel. Image processing with neural
networks requires specialized network architectures due to the inherent
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properties of images [75, 158]. First, images are generally high dimensional.
Medical images used in deep learning often have a spatial dimension of at
least 256× 256px. A fully-connected layer, with the same input and output
dimensions, would already have over 4 Billion parameters for images of this
size. This makes employing classical fully-connected neural networks for
imaging tasks impossible. Secondly, images have a high spatial correlation
of neighboring pixels, which is not taken into account for fully-connected
layers. Further, in many machine learning tasks images are stable under
certain geometric transformations, i.e., small shifts or rotations do not change
the content. Convolutional layers are designed to model these assumptions.
A multi-channel convolution for an input image hl ∈ Rd×d×c1 with spatial
dimensions d × d and c1 channels and an output hl+1 ∈ Rd×d×c2 with c2
channels is de�ned as the correlation with a �lter w ∈ R(2k+1)×(2k+1)×c1×c2

hl+1
i,j,c̃ =

c1∑︂
c=0

k∑︂
s=−k

k∑︂
r=−k

ws,r,c,c̃h
l
i+s,j+r,c, (1.29)

for i = 1, . . . , d, j = 1, . . . , d and c̃ = 1, . . . , c2. As hl is only de�ned on
the d×d pixel grid, the values outside of the domain have to be de�ned. This
is referred to as padding and a common choice is zero padding, i.e., setting all
elements outside of the d×d pixel grid to zero, e.g., hl−1,−1,c := 0. The number
of channels is typically increased in the hidden layers for many deep learning
architectures [75, 182]. The de�nition in Eqn. (1.29) is restricted to square
�lters (k × k) and images on a square d × d pixel grid but can be extended
to rectangle pixel grids and �lters. For a 1 × 1 convolution, i.e., k = 0, the
convolutional layer can be written as a linear transformation of the channels,
repeated as every pixel location. Let hl+1

i,j,· ∈ Rc2 be the vector of channels at
location (i, j) and hli,j,· ∈ Rc1 , then we have

hl+1
i,j,· = Wlhli,j,·, (1.30)

where Wl ∈ Rc2×c1 is the �lter matrix, i.e., Wl
c̃,c = wc,c̃.

A full convolutional layer consists of a multi-channel convolution with
activation function and bias

hl+1
i,j,c̃ = σ(hl+1

i,j,c̃ + bc̃), (1.31)

where b ∈ Rc2 is the bias for this layer, which is shared for all image pixels,
and the activation function is applied element-wise. There exist a variety of
extensions to this basic multi-channel convolution, for example, using strided
or grouped convolutions [144].
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Besides multi-channel convolutions, most CNNs also include
downsampling layers, to reduce the spatial dimension. This helps to
reduce the computational cost and makes the CNNs approximately invariant
to small translations [75]. One of the most widely used architectures
for image-to-image tasks, including image reconstruction and image
segmentation, is the U-Net proposed by Ronneberger et al. [168]. The U-Net
is an extension of fully convolutional networks [125]. It consists of two parts:
a contracting part and an expansive part. Modern variants of the U-Net
typically also include attention mechanisms in both the contracting and
expansive part [55].

1.3 Generative Modeling

Deep generative models have many applications in a lot of di�erent
research areas. Two important applications are based on either
estimating the likelihood of new observations, or generating new samples
from the underlying distribution. Evaluating the likelihood allows for
out-of-distribution or novelty detection [219], which is important in medical
or industrial applications. The generation of new samples is by now
widely known for the use of deep fakes [43] in particular in combination
with the recent advent of large-scale text-to-image di�usion model [215].
Applications in inverse problems include the approximation of posterior or
prior distributions and will be extensively discussed in the second chapter of
this thesis.

1.3.1 Setting

The goal of generative modeling is to model and estimate an unknown
distribution from a given dataset [75, 173, 186]. Let {x(i)}Ni=1 ∼ pdata(x)

denote the dataset, where we assume that all elements are i.i.d. samples
from the underlying data distribution pdata(x). Similar to Section 1.1.2, we
denote both the probability distribution and the density with p(·) and focus
on �nite-dimensional distributions.

In generative modeling, we choose a speci�c family of probabilistic
models {pθ| θ ∈ Θ} to model the data distribution pdata(x). The probabilistic
models pθ are parametrized by parameters θ ∈ Θ, where Θ is the set of
admissible parameter values. The goal is to identify parameters θ̂ such that

pθ̂(x) ≈ pdata(x). (1.32)
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The probabilistic model pθ(x) can then be used as a surrogate for the
unknown data distribution to facilitate sampling and density estimation.
In the context of deep learning, the probabilistic model pθ(x) is typically
denoted as a generative model and, in particular, if pθ(x) is constructed using
deep neural networks, as a deep generative model [173].

1.3.2 Density estimation as an ill-posed problem

Estimating the probability density function is an ill-posed inverse problem.
We present an example by Vapnik [206]. Assume the case of n = 1, i.e.,
one-dimensional density estimation. Further, assume we have a dataset of
i.i.d. samples {x(1), . . . , x(N)} from the target distribution with density p.
The density function is related to the distribution function via the integral
equation ∫︂ x

−∞
p(x′)dx′ = F (x), (1.33)

where we only have access to the empirical distribution function

F (x) ≈ FN(x) =
1

N

N∑︂
i=1

H(x− x(i)), (1.34)

with H : R → {0, 1} as the Heaviside function. The corresponding inverse
problem, i.e., estimating the derivative from the antiderivative, is ill-posed.

This highlights the fact, that generative modeling requires regularization.
In generative modeling, this regularization usually comes in the form of
choosing a speci�c family of probabilistic models {pθ| θ ∈ Θ}.

1.3.3 Fitting the Model

Modern generative modeling is framed as an approximation
problem [75, 173]. To �nd parameters θ̂, such that pθ̂(x) ≈ pdata(x),
we minimize the discrepancy of the probabilistic model to the target
distribution. The goodness of �t is measured with respect to the KL
divergence

DKL(pdata(x)||pθ(x)) = Ex∼pdata(x)

[︃
log

(︃
pdata(x)

pθ(x)

)︃]︃
, (1.35)
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where DKL(pdata(x)||pθ(x)) = 0 if and only if the two distributions are the
same. The optimal parameters are obtained by minimizing the KL divergence

argmin
θ∈Θ

DKL(pdata(x)||pθ(x))

= argmin
θ∈Θ

Ex∼pdata(x) [log pdata(x)]− Ex∼pdata(x) [log pθ(x)]

= argmin
θ∈Θ

Ex∼pdata(x)[− log pθ(x)],

(1.36)

which reduces to the minimization of the negative log-likelihood. As the
target distribution is unknown, we use the empirical estimate

θ̂ = argmin
θ∈Θ

1

N

N∑︂
i=1

− log pθ(x
(i)), (1.37)

as a proxy for Eqn. (1.36) using the available dataset {x(i)}Ni=1 ∼ pdata(x).
Besides the KL divergence, general f -divergences of the form

Df (pdata(x)||pθ(x)) = Ex∼pdata(x)

[︃
f

(︃
pdata(x)

pθ(x)

)︃]︃
, (1.38)

with a convex function f : [0,+∞) → (−∞,+∞], have been explored for
generative modeling [13, 151].

1.3.4 Challenges

Not every neural network de�nes a generative model pθ(x). As pθ(x)

models the density function of a distribution, it has to ful�ll two important
restrictions: non-negativity and normalization. While non-negativity is
often trivial to enforce for neural network architectures, the normalization
constraint, i.e. ∫︂

Rn
pθ(x)dx = 1 for all θ ∈ Θ, (1.39)

is much harder to ful�ll.
One class of models, which directly parametrize the probabilistic model,

are energy-based models (EBM) [1, 119, 161]. In an EBM, the probabilistic
model pθ(x) is parametrized as

pθ(x) = exp{−fθ(x)}/Zθ with Zθ =
∫︂
Rn

exp{−fθ(x)}dx, (1.40)

where fθ : Rn → R is a neural network, without any architectural restrictions,
and Zθ is the normalization constant. In deep learning frameworks,
Eqn. (1.37) is typically minimized by gradient descent, which requires the
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evaluation of the gradient

−∇θ log pθ(x) = ∇θfθ(x) +∇θ logZθ. (1.41)

The �rst part can be obtained using the backpropagation algorithm as
discussed in Section 1.2.3. The second term, ∇θ logZθ, can be estimated
as

∇θ logZθ = Ex∼pθ(x)[∇θfθ(x)], (1.42)

and requires access to samples from the EBM [90]. The samples are
usually obtained using Langevin MCMC methods. For each training step,
new samples are required, making the training computationally expensive.
However, there exists a lot of work to speed up the training, for example,
using a persistent MCMC chain throughout the training [200].

Instead of a direct parametrization of the probabilistic model, most
modern generative modeling frameworks construct pθ(x) as a transformation
of some tractable base distribution. Here, di�erent methods, i.e., constraining
the architecture or using a surrogate loss, are employed.

1.3.5 Implicit Generative Modeling

Most current deep learning frameworks use an implicit approach to modeling
the density [173]. This means, that the density is not parametrized directly
by a neural network. Instead, pθ(x) is implicitly parameterized as a
transformation of some base distribution pz(z), usually chosen as a Gaussian.
For this approach, the goal is to learn a generator gθ : Rk → Rn, that pushes
the base distribution pz(z) to the desired image space. The dimensionality of
the so-called latent space Rk is a crucial choice in the modeling process and
determines which training techniques can be applied.

Equal Dimensionality

First, there are approaches using an equal dimensionality of the latent space
and the image space, i.e., k = n. In this case, any measurable generator gθ
de�nes a valid distribution via the pushforward measure pθ = (gθ)#pz,
which enables training based on the maximum likelihood principle. These
push-forward models have strong connections to the optimal transport
theory [209] and there exists a rich theory about using these push-forward
models to learn to sample from a target distribution, see the review [132].
Moreover, if the generator is invertible, these models are denoted as
normalizing �ows, which will be covered in detail in Section 2.1. Further, this
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theory has been extended to injective generators [114]. Recently, score-based
di�usion models [91, 184, 189] where introduced as an alternative modeling
approach. Score-based di�usion models de�ne a forward di�usion process
mapping the data distribution pdata(x) to the latent distribution pz(z). It
has been shown that there exists a reverse di�usion process mapping the
latent distribution back to the data distribution [10]. This reverse di�usion
process requires access to the score ∇x log pdata. The generator gθ is implicitly
de�ned by this reverse di�usion process. Training the score-based di�usion
model requires estimating this score function. A detailed introduction to
score-based di�usion models and connections to normalizing �ows are given
in Section 2.4.

Lower Dimensional Latent Space

Another approach is to choose a lower dimensional latent space, i.e., k < n.
This is motivated by the manifold hypothesis [27], which states that
real-world high-dimensional data, such as images, are concentrated around
a low-dimensional manifold. The choice of using a lower dimensional
latent space comes with challenges in training such a model. For a lower
dimensional latent space, the range of the generator Range(gθ) is a k-dim.
manifold and any image x has probability zero almost everywhere under the
generator, which makes maximum likelihood training intractable. Variational
autoencoders (VAE) [108] de�ne a density on the full image space by
prescribing an observation model pg(x|z) = N (x; gθ(z), ηIn) such that

pθ(x) =

∫︂
Rk
pg(x|z)pz(z)dz (1.43)

de�nes a probability density. However, evaluating the likelihood requires the
computation of a high-dimensional integral, which is intractable for training.
VAE de�ne an additional trainable encoder eψ(z|x), usually implemented
as eψ(z|x) = N (z;µψ(x),Σψ(x)) with two neural networks µψ,Σψ estimating
mean and variance. With this additional encoder, the likelihood can be
rewritten as

log pθ(x) = Ez∼eψ(z|x)[log pθ(x)]

= Ez∼eψ(z|x)

[︃
log

(︃
pθ(x, z)

eψ(z|x)

)︃]︃
+DKL(eψ(z|x)||pθ(z|x))⏞ ⏟⏟ ⏞

≥0

≥ Ez∼eψ(z|x)[log pθ(x, z)]− Ez∼eψ(z|x)[log eψ(z|x)],

(1.44)

26



1.3 Generative Modeling

following the derivation in [173]. This lower bound is referred to as the
evidence lower bound (ELBO). Using the Gaussian observation mode, the
ELBO can be rewritten as
Ez∼eψ(z|x)[log pθ(x, z)]− Ez∼eψ(z|x)[log eψ(z|x)]
= Ez∼eψ(z|x)[log pg(x|z)− log pz(z)]− Ez∼eψ(z|x)[log eψ(z|x)]

= − 1

2η2
Ez∼eψ(z|x)[∥gθ(z)− x∥22]− Ez∼eψ(z|x)[log eψ(z|x)] + const.,

(1.45)

where the �rst term includes a reconstruction loss Ez∼eψ(z|x)[∥gθ(z) − x∥22],
similar to traditional autoencoders. Maximizing the ELBO thus maximizes
a lower bound to the log-likelihood. Both the parameters of the encoder ψ
and the parameters of the probabilistic θ are optimized at the same time.
Sampling from a VAE is a two-step process, �rst a sample from the latent
distribution is drawn, which is then used as an input to pg(x|z), i.e.,

x ∼ pθ(x) ⇔ x = gθ(z) + ϵ, with z ∼ pz(z), ϵ ∼ N (0, η2In). (1.46)

Even though g(z) might be a clean image, the �nal sample of the VAE
requires evaluation of the Gaussian observation model, which amounts to
adding noise with a �xed variance to gθ(z). In particular for the Gaussian
observational model, the images produced by a VAE thus often have worse
visual quality than other generative models [216].

Generative adversarial networks (GANs) [76] circumvent the problem
of dealing with the likelihood by only training a generator for sampling.
The di�erence between samples from the GAN and the dataset is
measured directly in image space. However, in contrast to the VAE, this
di�erence is not measured using an L2 loss function. Rather, training a
GAN can be interpreted as a zero-sum-game, where an additional neural
network dϕ : Rn → [0, 1] is trained to distinguish between samples from the
training data, i.e., dϕ(x) ≈ 1 for x in the training data, and samples from
the GAN, i.e., dϕ(gθ(z)) ≈ 0. This can be encoded in the loss function

LGAN(θ, ϕ) = Ex∼pdata(x)[log dϕ(x)] + Ez∼pz(z)[log(1− dϕ(gθ(z)))], (1.47)

which is maximized with respect to the discriminator dϕ and minimized
with respect to the GAN gθ. Due to directly measuring the distance of
samples in the image space, the visual quality of samples is often superior
when compared to likelihood-based models [174]. However, the training of a
GAN can be unstable and su�er from mode collapse. There exist di�erent
variations, for example, the Wasserstein GAN [13, 79], which propose
di�erent loss functions to enable more stable training.
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1.4 Application to Inverse Problems

Deep learning o�ers immense opportunities to modify the model-based
approach to inverse problems with novel data-driven techniques. The usage
of available data can help to include prior knowledge in the reconstruction
process, for example by adapting a reconstruction method to perform better
on a speci�c image manifold [3] or learning to correct errors of the forward
operator [129]. Data-driven techniques have already been explored prior to
the advent of deep learning. Early examples include dictionary learning [203],
basis-constrained reconstruction [207] or the estimation of regularization
parameters based on available data [198]. However, due to new developments
in hardware and the collection of large datasets, these data-based methods
can now be implemented on a larger scale.

In recent years a plethora of deep learning methods have been proposed
to tackle various inverse problems. Two main characteristics can be identi�ed
in which these methods di�er: 1) what kind of data is used for training and 2)
how much knowledge about the physical system is included. Ongie et al. [149]
provides a comprehensive taxonomy categorizing di�erent approaches by
these two categories. For example supervised methods vs. unsupervised,
postprocessing vs. learned-iterative, or generative vs. functional analytic
methods. There exist many good reviews covering di�erent methods, see for
example [16, 133, 149, 176].

The theoretical foundation of many of these data-driven models is still
lacking, compared to classical regularization. There has been a push to
combine data-driven techniques with classical methods to provide some
theoretical guarantees, see for example the recent review [143].

In this introduction, we cover di�erent concepts, which are important
in the scope of this thesis. These include learned reconstructors, learned
regularizers, posterior estimation, and untrained models.

1.4.1 Learned Reconstruction

Training a parametrized reconstruction method in the supervised framework
requires access to a paired dataset {(x(i),y(i))}Ni=1 of measurements y and
corresponding ground truth images x. The goal is to �nd parameters θ̂ ∈ Θ

of a parametrized reconstruction operator Rθ : Y → X , such that

Rθ̂(y) ≈ x. (1.48)
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The trained operator can then be used in place of more traditional
reconstruction methods. Using the paired dataset, the parameters θ̂ can be
recovered by ERM

θ̂ = argmin
θ∈Θ

N∑︂
i=1

ℓ
(︁
x(i),Rθ(y

(i))
)︁
, (1.49)

with a suitable loss function ℓ : X × X → R≥0. After this initial training
phase, the reconstructions are obtained as x̂ = Rθ̂(y). The learning approach
crucially depends on the parametrization of the reconstructor Rθ. In some
works the full mapping from the measurements to the image is implemented
as a neural network, for example, AUTOMAP [217] or iRadon [86], both
for CT reconstruction. However, these approaches often require a larger
dataset to achieve similar quality to other learned reconstruction approaches,
see the empirical comparison in [19]. Further, these approaches require
specialized architectures to parametrize the mapping as the measurement
space Y and the image space X often have a di�erent topology. For example
in CT, the measurements are line integrals and X is de�ned as the space
of discrete images. Typically more successful are learned reconstructors,
which incorporate knowledge about the inverse problem directly into the
architecture. These methods can be classi�ed into postprocessing (two-step)
methods [149, 179] and learned iterative methods [3, 78, 159].

Postprocessing methods parametrize the reconstructor as Rθ = R̃θ ◦A†,
where A† : Y → X is some initial (classical) reconstruction method
and R̃θ : X → X is a neural network only acting upon the image space X .
In this two-step process, the network R̃θ learns to remove noise and artifacts
from the provided initial reconstruction. From another point of view, the
postprocessing approach can be understood as a type of data preprocessing.
Instead of training a model on a supervised dataset {(x(i),y(i))}Ni=1, the
measurements are replaced with initial reconstructions x̃(i) = A†y(i). This
de�nes a new supervised dataset {(x(i), x̃(i))}Ni=1, which can be directly used
to train the network R̃θ. As the postprocessing network R̃θ only acts on
images, the architecture can be e�ciently implemented as a CNN.

For learned iterative methods, an iterative reconstruction algorithm is
unrolled for a �xed number of steps, and some components are exchanged
with trainable neural networks. As an example, assume we have the
variational regularization objective from Eq. (1.3) with a convex regularizer.
The reconstruction can be obtained by gradient descent

xk+1 = xk − λ
(︁
A∗(Axk − y)− α∇xS(xk)

)︁
. (1.50)
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Instead of using this additive update for the current iterate, the update rule
can be learned using a neural network fθk : X × X × X → X , i.e.,

xk+1 = fθk(x
k,A∗(Axk − y),∇xS(xk)), k = 0, . . . , K − 1. (1.51)

This unrolled iterative process de�nes a parametrized reconstruction
operator Rθ(y) := xK , which directly incorporates the forward, adjoint, and
gradients of the operator into the network architecture. Note that the learned
network fθk acts only on images, similar to the postprocessing network,
and similar CNN architectures can be used. The technique of unrolling

an iterative scheme was popularized by LISTA [78], a learned unrolled
version of ISTA [69] for sparse coding. This research has led to a variety of
learned iterative networks inspired by di�erent classical iterative methods,
for example, learned gradient descent [3], learned primal-dual [4] or the
deep AADM-Net [195]. However, even though these networks are inspired
by existing algorithms, all convergence properties of the original iterative
algorithm are lost during the unrolling and learning process. Recently, a lot
of research focused on incorporating guarantees into these learned iterative
algorithms by introducing some constraints in the architecture, see for
example, [85], but the empirical performance is still worse compared to the
unconstrained counterparts.

The computational e�ort of learned reconstructors is quite di�erent
from the classical variational regularization framework. For the learned
reconstructors, the main computational e�ort is spent for the initial training
phase (see Eqn. (1.49)), which can take multiple days to weeks (see for
example the training times in [121]), whereas the evaluation of the �nal
model is fast, usually one a few milliseconds [149]. This is especially the case
for reconstructors constructed using CNNs, which are fast to evaluate due to
hardware accelerations on GPUs.

1.4.2 Learned Regularizers

The choice of the regularizer in the variational regularization framework is an
important aspect and can drastically a�ect the performance. The prior can
be hand-crafted to promote desired features in the reconstructed image, such
as sparsity of edges [172] or smoothness. However, modeling the higher-order
statistics or assumption of natural images by hand can become increasingly
di�cult. Therefore, quite early, frameworks for learning the regularizer from
data have been developed, see [218] as an example for natural images. This
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means, that the variational regularization objective changes to

Rθ(yδ) = argmin
x∈X

∥Ax− yδ∥2X + Sθ(x), (1.52)

where Sθ : X → R≥0 is a parametrized regularizer with parameters θ that
should be learned from data. There exist di�erent methods of obtaining
suitable parameters θ.

Bilevel Optimization The parameters θ can be learned in a supervised
framework, see for example [16, 50, 80]. Assume, we have a paired
dataset {(x(i),y(i))}Ni=1. In the bilevel optimization approach, we choose θ̂
as the minimizer of

θ̂ ∈ argmin
θ

N∑︂
i=1

∥Rθ(y
(i))− x(i)∥22,

where Rθ(y) = argmin
x∈X

∥Ax− y∥22 + Sθ(x).
(1.53)

Bilevel optimization can be computationally expensive, as for most iterative
methods the lower-level optimization problem has to be solved for every
iteration [36]. Other approaches based on constrained optimization typically
do not scale to large datasets [80].

Plug-and-Play Unsupervised regularizers are usually more �exible, in the
sense that the same learned regularizer can be applied for several di�erent
inverse problems, as long as the underlying image distribution does not
change [61]. An example here is the Plug-and-Play (PnP) framework. For
convex (not necessarily di�erentiable) regularizers S : X → R≥0, we can
solve the variational problem in Eqn. (1.3) using proximal algorithms [152].
Proximal gradient descent is given by

xk+1 = proxλkαS(x
k − λkA∗(Axk − y)), (1.54)

where λk > 0 is the step size and the proximal mapping is de�ned by

proxλkαS(x) = argmin
u

1

2
∥x− u∥22 + λkαS(u). (1.55)

Evaluating the proximal mapping can be seen as a denoising task with
regularizer S. In PnP algorithms, the proximal mapping is replaced with
some o�-the-shelf denoiser D : X → X [208]. Here, both classical denoisers,
such as BM3D [47], or deep denoisers [134], based on neural networks, have
been employed. In order to train a deep denoiser Dθ : X → X , parameterized
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by θ, we need a dataset of clean images {(x(i))}Ni=1 and train the denoiser by

min
θ

1

N

N∑︂
i=1

Ez∼N (0,I)[∥Dθ(x
(i) + σz)− x(i)∥22], (1.56)

where σ is a noise level chosen prior. After training, the trained denoiser can
be integrated into the PnP algorithm

xk+1 = Dθ(x
k − λkA∗(Axk − y)). (1.57)

The PnP framework has been extended to other proximal algorithms, for
example to proximal ADMM [70].

Generative Regularizers In the statistical framework, see Section 1.1.2,
the variational regularization framework can be interpreted as MAP
estimation. In this formulation, the regularizer S(x) = − log π(x) is given
by the negative log-likelihood of the prior. Learning a regularizer thus
is equivalent to learning the prior. Here, any of the probabilistic models
from Section 1.3 can be employed. For likelihood-based models, such as
the normalizing �ow, we can directly use the negative log-likelihood as a
regularizer. Generative regularization, in particular with normalizing �ows,
will be extensively discussed in Section 2.3.2. For likelihood-free models, such
as the GAN, the distance to the data manifold can be used as a regularizer,
see for example the recent overview article [61].

Adversarial Regularizers The regularizer S in variational regularization,
see Eqn. (1.3), takes on small values for desirable solutions and large values
for undesirable solutions1. Notably, two learning frameworks make use of this
intuition and train a regularizer using a dataset of desirable and undesirable
solutions: quotient minimization [29] and the adversarial regularizer [128].
The adversarial regularizer has an extension for learning convex regularizers
with proven convergence properties [142].

1.4.3 Learning the Posterior

Access to the posterior enables uncertainty estimation for statistical inverse
problems. Further, it allows for exploring di�erent estimators, for example,
the MAP or conditional mean, as discussed in Section 1.1.2. In the Bayesian
framework, we can decompose the posterior into likelihood and prior. In the

1Note that the regularizer actually also distinguishes between solutions with the same

function value, see the example in Section 3 of [28].
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previous section, we assumed that the likelihood is known, i.e., we have access
to the forward operator and the noise model. Under this assumption, only the
prior is unknown and has to be learned from data. However, if the forward
operator is unknown or if we are unsure about the speci�c noise model,
this approach cannot be used. In this case, we have the option to estimate
the full posterior given a supervised dataset {(x(i),y(i))}Ni=1 of images and
corresponding measurements. In contrast to learning the prior, this approach
is adapted to a speci�c forward operator and measurement setup. All
modern deep generative models, discussed in Section 1.3, have extensions for
conditional density estimation. There are conditional GANs [137], conditional
VAEs [109], conditional di�usion models [24] and conditional normalizing
�ows [214]. In particular conditional normalizing �ows and their applications
to inverse problems will be discussed in Chapter 2.

1.4.4 Untrained Models

Training a neural network, whether for reconstruction, as a prior or to
estimate the posterior, requires a large amount of training data. However,
in many domains, especially in medical imaging, obtaining a large dataset
can be challenging or costly. In these sparse data settings another class
of deep learning models can be applied, categorized for example by
Dimakis as untrained generative models [56]. Notably, the Deep Image
Prior (DIP) [204] o�ers a promising alternative. DIP has been successfully
applied to various image-to-image tasks such as denoising, deblurring, and
in-painting [204]. It has also shown promising results in medical imaging,
including PET reconstruction [183] and CT reconstruction [19].

In the DIP framework a convolutional neural network f(θ, z) is initialized
with random weights θ. The reconstruction x̂ = f(θ̂, z) is obtained by
optimizing the weights of the network to �t the measurements, i.e.,

θ̂ ∈ argmin
θ∈Θ

∥Af(θ, z)− yδ∥22 (1.58)

for a random, but �xed, input z. The intuition behind the DIP is that the
convolutional architecture acts as a regularizer and is a good representation
of natural images [56, 88, 205]. The DIP objective in Eqn. (1.58)
de�nes a challenging optimization problem as it is both non-convex and
over-parameterized, as the number of network weights is usually larger than
the number of image pixels. Van Veel et al. [205] demonstrated that a
simple over-parameterized two-layer neural network with ReLU activations
can recover a reconstruction f(θ̂, z) �tting the measurements with zero
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loss, highlighting the need for regularization, else we would �t the noise
in yδ. Usually this regularization is implemented as an early stopping of the
optimization [56, 204]. The DIP generally has two drawbacks. First, it is hard
to de�ne an early stopping rule based surerly on the noise measurements yδ.
Secondly, the DIP has to be retraining for each measurement yδ, resulting in
a high computational e�ort.

Instead of early stopping, a regularizer can be integrated into the DIP
objective. Baguer et al. [19] propose an additional regularizer SX : Rn → R≥0

in image space

min
θ

∥Af(θ, z)− yδ∥22 + αSX (f(θ, z)), (1.59)

which is applied to the output of the network. Van Veen et al. [205] directly
include a regularizer SΘ : Θ → R≥0 for the weights of the network

min
θ

∥Af(θ, z)− yδ∥22 + αSΘ(θ), (1.60)

where the speci�c form of the regularizer is learned from data in an initial
training stage. To speed up the training process, Barbano et al. [22] suggest
pre-training the DIP on a carefully crafted, synthetic dataset. The weights
of the DIP are then initialized with this pre-training and subsequently
�ne-tuned using the DIP objective in Eqn. (1.58).

1.4.5 Challenges

Two common challenges of applying deep learning image reconstruction
techniques in real-world applications are the lack of ground truth images and
distribution shifts, i.e., the data at test time is di�erent from the training
data.

Lack of Ground Truth Most of the methods discussed in the previous
section either rely on a paired dataset {(x(i),y(i))}Ni=1 or on ground truth
images {x(i)}Ni=1. However, getting access to a large dataset suitable for
training deep learning models is often a time-consuming task. In particular
in medical imaging, we do not even have access to real ground truth images.
Rather, high-quality reconstructions from low-noise measurements are used
as a proxy [99, 133]. Deep learning methods for inverse problems thus have
a chicken & egg-scenario [59] as we need to know how to solve the inverse
problem to create data needed for training the network. There are a variety
of extensions based on transfer learning and self-supervised learning to tackle
this problem. In transfer learning, the neural network is �rst pre-trained on
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similar, or even synthetically generated, data and only �ne-tuned based on
a small dataset of available measurements [20]. Both the HDC 2021 [51]
and the HTC 2022 [72] were won by deep learning methods making use of
simulated data for training. In the self-supervised approach, one can make
use of a large dataset of measurements {y(i)}Ni=1 and adapt the loss function.
One such choice is to use an unsupervised loss function, i.e., we train a deep
reconstructor Rθ : Y → X via

min
θ

N∑︂
i=1

[︃
1

2
∥ARθ(y

(i))− y(i)∥22 + αS(Rθ(y
(i)))

]︃
, (1.61)

where the �rst term enforces data consistency and the second term introduces
additional regularization via a functional S : X → R≥0. The unsupervised
loss function in Eqn. (1.61) mimics the variational objective in Eqn. (1.3).
As the data consistency is only enforced in the measurement space Y , no
information in the kernel of A can be learned [37]. Geometrical properties
of the forward operator can be exploited and integrated into the network
architecture to improve the self-supervised approach. Chen et al. [38] propose
to learn equivariant neural networks, which forces the neural network to
be equivariant with respect to rotations of the input image. In another
research direction, the supervised mean squared error loss function can be
approximated by an unsupervised proxy via Stein's unbiased risk estimate
(SURE) [191]. The original SURE framework was proposed only for image
denoising. However, there exist extensions, i.e., GSURE, for more general
forward operators A [136]. This framework has recently been extended for
the training of deep generative models from noisy measurements only [104].

Distribution Shift Supervised end-to-end trained reconstruction methods
have demonstrated excellent performance in various image reconstruction
tasks. For instance, both the fastMRI [112] and the LoDoPabCT [121]
challenge have been won using supervised neural network approaches.
However, it has been observed that neural networks struggle to keep the
performance when faced with di�erent types of perturbations or distribution
shifts [11]. This issue is not exclusive to image reconstruction, but has
been observed in many deep learning approaches, for example in image
classi�cation networks [162]. Distribution shifts can generally be classi�ed
into two categories: domain shifts, where the prior π(x) changes, and model
shifts, where the likelihood plkhd(y|x) changes. A domain shift occurs, for
example, when a network trained on CT scans of knees is applied to
measurements of brains, or when a network trained on CT scans from one
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hospital is applied to measurements from patients of another hospital [48].
An example of a model shift would be a di�erent scanner setup for CT,
where are di�erent set of angles is measured. Han et al. [83] proposes to
tackle the problem of domain shift by �ne-tuning the trained network on
a small dataset from the new domain in MRI reconstruction. However,
such a dataset is not always available. Darestani et al. [48] developed
a test-time-adaptation approach based on a self-supervised loss function
combined with an early stopping rule, using only the new out-of-distribution
measurement y. Let Rθ : Y → X denote the pre-trained reconstruction
network, test-time-adaptation is then performed by optimizing the following
loss function

min
θ

1

2
∥ARθ(y)− y∥22. (1.62)

This loss function encourages the reconstruction to be consistent with the
measured data. Similar approaches can be used to address the issue of model
shift, i.e., if the forward operator A changes during evaluation [73]. This is
of particular importance for medical imaging tasks, as each scanner setting
(number of angles, choice of angles) in CT corresponds to a di�erent discrete
forward operator. Finally, it has been shown that distribution shifts can
drastically reduce the performance of deep generative models. In the context
of score-based di�usion models, we developed a test-time-training approach
to increase the performance on out-of-distribution data [23].
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Invertible Neural Networks

We can impose an inductive bias on the learning problem by carefully
designing the network architecture. A good inductive bias can guide and
constrain the network to produce a more realistic output. In recent years,
di�erent frameworks constraining the network to learn a function with
speci�c properties, e.g., input convex neural networks [9], equivariant
convolutional networks [46], maximal monotone networks [156] and invertible
neural networks, which are discussed in this chapter, have been proposed.
Restricting the class of possible neural networks also helps in developing
mathematical theory. It is also a crucial part of reliable neural networks as
the model will have the same basic properties independent from the training
algorithm or dataset. In particular, enforcing invertibility for neural networks
allows us to

� learn generative models,

� construct memory-e�cient neural networks,

� and learn provable regularizers for linear inverse problems.

We start with introducing normalizing �ows in Section 2.1, where we cover
both �nite and continuous normalizing �ows. In Section 2.2, we will present
di�erent methods to construct invertible neural networks, based on a variety
of di�erent building blocks. Then, in Section 2.3, we will discuss how these
invertible neural networks can be applied in inverse problems. Lastly, in
Section 2.4, the link between continuous normalizing �ows and score-based
di�usion models will be explored.
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2.1 Normalizing Flows

Density estimation is a challenging task in statistics. The data of interest is
often both high dimensional and highly structured, requiring powerful models
to represent this complexity. Normalizing �ows are a class of probabilistic
models that de�ne rich transformation while still being trainable. They
work by de�ning a learnable invertible transformation, mapping a given base
density to a target density. Invertibility is a necessary component, enabling
exact computation of the log-likelihood, and thus allowing for maximum
likelihood training.

The concept of transforming data into white noise, known as whitening
transformations [100], is a standard prepropressing step in statistics. A
technique called Gaussianization has already used this idea for density
estimation in the early 2000s [42]. The modern framework of normalizing
�ows was introduced by Tabak and Turner [196], who observed that a
complex transformation can be built by composing simple maps. If all
simple maps are invertible, the composition is also invertible. With the
rise of deep learning, neural networks were proposed to parametrize these
simple maps [166]. Initially, the forward and inverse passes were parametrized
separately using two neural networks, and an auto-encoder loss was employed
to promote invertibility1. The NICE framework [57] introduced the use
of invertible neural networks to parametrize both the forward and inverse
transformation with the same network. This research sparked further work,
leading to the development of various strategies for implementing �exible
invertible neural networks, see for example the review articles [113, 151].

For this introduction, we follow the presentation of Papamakarios
et al. [151] and focus on continuous probability distributions that are
absolutely continuous with respect to the Lebesgue measure, i.e., admit a
probability density. We therefore denote both the density and the probability
distribution with that density with p(·). For a random variable z, we
write z ∼ pz(z) to show that z is distributed according to pz(z) and
admits this density. Further, we work with �nite-dimensional densities
and assume that the images x ∈ X = Rn are n-dimensional and the
measurements y ∈ Y = Rm are of dimension m ∈ N.

1Recently, this idea has received renewed interest, see [60].
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2.1.1 Finite Normalizing Flows

A normalizing �ow is given by a transformation Tθ : Rn → Rn that transforms
a vector z ∈ Rn

x = Tθ(z), (2.1)

where z ∼ pz(z) is sampled from a base distribution. In contrast to the latent
variable models, described in Section 1.3, both the variable z and x have the
same dimension. In the context of normalizing �ows, we refer to z as base
variables and not as latent variables. A distinct characteristic of normalizing
�ow is that the transformation has to be a di�eomorphism, i.e., invertible,
and both Tθ and T −1

θ need to be di�erentiable. Under these conditions, Tθ
is measurable and de�nes a distribution pθ = (Tθ)#pz via the pushforward
operator. The density can be calculated via change-of-variable

pθ(x) = pz(T −1
θ (x))| det JT −1

θ
(x)|, (2.2)

where JT −1
θ

denotes the Jacobian matrix of T −1
θ . Using z = T −1

θ (x) the
density can also be expressed using the Jacobian of Tθ, i.e.,

pθ(x) = pz(z)| det JTθ(z)|−1, z = T −1
θ (x). (2.3)

It is important to distinguish between the computational complexities
associated with sampling and calculating the likelihood. When sampling from
a �ow-based model, as outlined in Eqn. (2.1), the forward mapping Tθ is
necessary. Sampling is a two-step process: �rst, we sample z ∼ pz(z) from the
base distribution and secondly, this sample gets transformed via the forward
mapping Tθ.

To construct normalizing �ows, we can use the fact that di�eomorphisms
are composable. If both T1 : Rn → Rn and T2 : Rn → Rn are di�eomorphisms
then T := T2 ◦ T1 : Rn → Rn is also a di�eomorphism. The inverse and
Jacobian determinant are given by

T −1 = T −1
1 ◦ T −1

2 , det JT (z) = det JT2(T1(z)) · det JT1(z), (2.4)

i.e., if one knows how to invert both T1 and T2, it is trivial to invert the
composition. This allows the construction of complex transformations by
composing several simple invertible building blocks. If each building block
on its own has a tractable Jacobian determinant, the Jacobian determinant
of the full normalizing �ow is also tractable. This inherent characteristic
serves as the foundational principle for building normalizing �ows in practice.
Normalizing �ows constructed as a composition of a �nite number of building
blocks are sometimes referred to as �nite normalizing �ows [151]. Throughout
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Chapter 2 Invertible Neural Networks

this thesis, we will refer to them as normalizing �ows and introduce the
term �nite only when necessary for clarity. Further, the full probabilistic
model pθ(x) is sometimes referred to as a �ow-based model.

The transformation Tθ is parametrized by parameters θ ∈ Θ, where Θ

is the space of admissible parameters. By adjusting the parameters of Tθ,
we change the density pθ(x) imposed by the �ow-based model. The goal is
to �nd the parameters θ such that the �ow-based model approximates a
given target distribution pdata(x). To achieve this, we minimize the distance
of pθ(x) to pdata(x) with respect to some distance in the space of probability
densities. Usually, the KL divergence is employed to measure the distance.
Minimization of the KL divergence recovers the negative log-likelihood loss
used for �tting probabilistic models, cf. Section 1.3. The KL divergence can
be written as

DKL[pdata(x)||pθ(x)] = Ex∼pdata [− log pθ(x)] + const., (2.5)

with a constant term not depending on the parameters θ. Using the expression
of the �ow-based density in Eqn. (2.2) and dropping constants that are not
dependent on the parameters θ, we get the loss function

L(θ) = Ex∼pdata(x)

[︂
− log pz(T −1

θ (x))− log | det JT −1
θ

(x)|
]︂
, (2.6)

used to �t the �ow-based model. The expectation over the data
distribution pdata(x) can be estimated with a dataset {x(i)}Ni=1 of i.i.d. samples
using Monte Carlo, i.e.,

L(θ) ≈ 1

N

N∑︂
i=1

(︂
− log pz(T −1

θ (x(i)))− log | det JT −1
θ

(x(i))|
)︂
. (2.7)

In most applications, the base distribution is chosen as a standard Gaussian.
In this case, the loss function can be further simpli�ed as follows

L(θ) ≈ 1

N

N∑︂
i=1

(︃
1

2
∥T −1

θ (x(i))∥22 − log | det JT −1
θ

(x(i))|
)︃
. (2.8)

This loss function requires evaluation of the inverse T −1
θ and the Jacobian

determinant of the inverse. Crucially, the forward pass is not used during
training and only necessary for sampling in Eqn. (2.1).

2.1.1.1 Parametrize Forward or Inverse?

As we have seen in the previous section, there are di�erent computational
requirements for likelihood computation, necessary for training, and
sampling:
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2.1 Normalizing Flows

1. Likelihood computation and training: Evaluating T −1
θ and the log-det

Jacobian

2. Sampling: Evaluating Tθ and sampling from the base distribution

Flow-based models employing coupling layers (see Section 2.2.2), are
generally computationally symmetric, i.e., the computational costs for both
the forward and inverse passes are identical. However, other architectures, for
example, invertible residual networks (see Section 2.2.3) or auto-regressive
networks [93], do not share this property. In these cases, it is of importance
if Tθ or T −1

θ is parametrized by an invertible neural network.
Assume that we have an invertible neural network fθ, which is invertible

in theory, but evaluating the inverse of the network is very expensive or even
impossible. For these types of architectures, the inverse �ow, i.e., fθ = T −1

θ ,
can be parametrized instead. This results in the following loss function

min
θ

1

N

N∑︂
i=1

(︃
1

2
∥fθ(x(i))∥22 − log | det Jfθ(x(i))|

)︃
, (2.9)

for a Gaussian base distribution. Invertible models, without an analytical
inverse or an expensive computation of the inverse, can still be used
for e�cient likelihood estimation. This kind of model can be used
for out-of-distribution detection [163] or to approximate posteriors in
VAEs [151].

2.1.1.2 Sampling Error

We are often interested in estimating speci�c moments of the target
distribution pdata(x). In particular, in statistical inverse problems, the
conditional mean or pointwise conditional variance is of interest. We can
apply the trained �ow-based model pθ = (Tθ)#pz as a surrogate to estimate
speci�c moments g(x)

Ex∼pdata(x)[g(x)]
(1)
≈ Ex∼pθ(x)[g(x)]

= Ez∼pz(z)[g(Tθ(z))]
(2)
≈ 1

N

N∑︂
i=1

g(Tθ(z(i))) z(i) ∼ pz,
(2.10)

where we take advantage of the fact that sampling from the base
distribution pz(z) is usually cheap. The error in the Monte Carlo
approximation (2) depends on the number of samples N and can thus
be reduced by drawing more samples from the base distribution and
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transforming them with the normalizing �ow. The approximation (1) can
be bounded using the KL divergence, i.e.,

∥Epdata [g(x)]− Epθ [g(x)]∥ ≤ C(pdata, pθ)
√︂
DKL(pdata||(Tθ)#pz), (2.11)

with C(pdata, pθ) =
√︁

2(∥Epdata [g(x)]∥2 + ∥Epθ [g(x)]∥2) [132]. This inequality
tells us, that the approximation error is bounded by the KL divergence, which
is exactly the quantity that is minimized during training.

2.1.1.3 Instability

Behrmann et al. [26] showed that stability issues can arise in �ow-based
models when applied to real-world datasets. Typically, these models
employ a standard Gaussian as the base distribution. When dealing with
multi-modal distributions that exhibit low-density regions between modes,
a high Lipschitz constant is necessary to map the standard Gaussian
to separate modes in the target distribution. As an example, Hagemann
et al. [82] showed that for a standard Gaussian base distribution and
a target x ∼ 1/2N (1, σ2) + 1/2N (−1, σ2) the Lipschitz constant Lip(Tθ)
explodes2 as σ2 → 0, i.e., as the density between the modes decreases. The
authors further show that using a multi-modal base distribution can help
alleviate these stability issues. As during training only the inverse T −1

θ is
needed, the exploding Lipschitz constant for Tθ can go unnoticed.

2.1.2 Conditional Normalizing Flows

Normalizing �ows allow us to model densities as transformations of a
simple base density pz(z). In inverse problems, we are often interested in
modeling the posterior ppost(x|y), i.e., the conditional density of the image x
given measurements y. Modeling conditional densities can be achieved with
conditional normalizing �ows [12, 214]. A conditional normalizing �ow is
de�ned by a transformation Tθ : Rn × Rm → Rn that takes y ∈ Rm as an
additional input to transform a base variable z

x = Tθ(z,y), (2.12)

where z ∼ pz(z) is sampled from a pre-speci�ed base distribution. If, for every
�xed y ∈ Rm, the forward mapping Tθ(·,y) : Rn → Rn is a di�eomorphism,
we can de�ne the pushforward px|yθ = (Tθ(·,y))#pz and calculate the density

2The term exploding inverse is used by Behrmann et al. [26] to refer to the unstable

inverse due to a high Lipschitz constant, see also Figure 1 in [26].
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via change-of-variables

p
x|y
θ (x|y) = pz(T −1

θ (x,y))| det JT −1
θ

(x;y)|, (2.13)

where JT −1
θ

denotes the Jacobian matrix of T −1
θ (·,y) given a �xed input y.

Put di�erently, the transformation Tθ(·,y) de�nes a family of normalizing
�ows.

The process of training a conditional normalizing �ow is similar to the
training of normalizing �ows. The goal is to �t the �ow parameters θ such
that the conditional density px|yθ (x|y) de�ned by the conditional �ow-based
model approaches a given posterior ppost(x|y). Here, we can minimize the
expected KL divergence over measurements y ∼ p(y). This results in the
loss function

argmin
θ∈Θ

LCNF(θ) = argmin
θ∈Θ

Ey∼p(y)[DKL[p
post(x|y)||px|yθ (x|y)]] (2.14)

= argmin
θ∈Θ

E(x,y)∼p(x,y)[− log p
x|y
θ (x|y)]

= argmin
θ∈Θ

E(x,y)∼p(x,y)

[︂
− log pz(T −1

θ (x,y))− log | det JT −1
θ

(x;y)|
]︂
,

where we used the change-of-variable formula and dropped all constants
independent of θ in the last step and set p(x,y) = ppost(x|y)py(y).

The conditional transformation Tθ is modeled as a neural network with
two inputs. In many medical imaging applications, the structure of the
measurements y can be highly complicated. For example, in computed
tomography, the measurements represent line integrals taken from various
angles. Constructing a neural network to directly handle such inputs is very
challenging and highly problem depending. To address this problem and
simplify the network construction, the measurements are often preprocessed
using the adjoint A∗ : Rm → Rn or a similar method to project
the measurements into the image domain [52, 53] or [150]. For linear
inverse problems with additive Gaussian noise, it can be shown that the
posterior ppost(x|y) = ppost(x|A∗y) remains the same if adjoint data A∗y is
used as an input (see [6, Proposition 1] or [150]). Furthermore, this adjoint
preprocessing provides a physics-informed way of obtaining standardized
data. The dimensionality of computed tomography measurements depends
on the number of measured angles and the number of detector pixels, which
means that the conditional �ow-based model must be able to work with data
of di�erent shapes. On the other hand, the adjoint data A∗y always has the
same dimensionality, regardless of the measurement setup. In particular, this
allows implementations based on convolutional layers.
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2.1.3 Continuous Normalizing Flows

Finite normalizing �ows are constructed as a composition of a �xed number
of simple transformations. To achieve a high level of expressiveness, a large
number of simple transformations is needed, resulting in very deep neural
networks. Instead, Chen et al. [40] observed that the normalizing �ow can be
modeled in continuous time by de�ning the transformation as the solution of
an ordinary di�erential equation (ODE)

dz(t)

dt
= fθ(z(t), t) t ∈ [0, T ], (2.15)

where fθ : Rn×R → Rn is implemented as a time-dependent neural network.
ODEs of this type, where the dynamics are governed by a neural network,
are referred to as neural ODEs and are studied in many areas of physical,
�nancial, or time series modeling (see the overview [105]). Similar to �nite
normalizing �ow, we de�ne a density for each intermediate z(t) by imposing a
base distribution for z(0) ∼ pz(z(0)) at t = 0. All intermediate densities can
be evaluated using a continuous variation of change-of-variables. We denote
the time-dependent density with pθ : [0, T ] × Rn → R≥0 and the likelihood
is given by

d log pθ(t, z(t))

dt
= −Tr

[︁
Jfθ(·,t)(z(t))

]︁
, (2.16)

which is equivalent to the Fokker-Planck equation with a deterministic
dynamic and random initial conditions [77, 105]. For continuous
change-of-variables, we require that fθ is continuous in t and uniformly
Lipschitz continuous in z [151]. Importantly, no invertibility is required.
However, continuous normalizing �ows often have a higher computational
cost compared to their �nite counterparts. Instead of one pass through the
network, the dynamical system in Eqn. (2.16) has to be solved from t = 0

to t = T to draw one sample. Further, evaluating the trace of the Jacobian
is computationally expensive, in particular in high-dimensional settings. To
alleviate the computational cost, either the Hutchinson trace estimator [94]
(cf. Section 2.2.3) or special neural network architectures [39] are employed.

Continuous normalizing �ows can be trained using the maximum
likelihood objective. This requires the evaluation of the log-likelihood of a
data sample x at t = T . Using Eqn. (2.16), the log-likelihood is given by

log pθ(T,x) = log pθ(0, z(0))−
∫︂ T

0

Tr
[︁
Jfθ(·,t)(z(t))

]︁
dt, (2.17)

with log pθ(0, z(0)) = log pz(z(0)) as the base distribution and z(0) as the
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solution to the initial value problem
dz(t)

dt
= fθ(z(t), t) z(T ) = x, t ∈ [T, 0], (2.18)

running backwards in time from t = T to t = 0. This initial value problem
and the evaluation of the integral on the RHS in Eqn. (2.17) can be written
compactly as one system of ODEs. Evaluating the likelihood thus requires
one call to an ODE solver. Training the network with the maximum likelihood
objective demands to backpropagate through the ODE to collect all necessary
gradients. There are generally three ways to accomplish this [105].

Full discretization The initial value problem is fully discretized and the
gradients are computed with respect to the discretized ODE, i.e., using
Euler's method

z(t−ϵ) = z(t) − ϵfθ(z
(t), t), (2.19)

with a small step size ϵ > 0. For a step size ϵ < 1/L with L being the Lipschitz
constant of fθ(·, t), this resembles the architecture used in invertible residual
networks (see Section 2.2.3) [151]. For the gradient computation, we can
make use of automatic di�erentiation and the backpropagation algorithm.
However, this full discretization approach is typically memory intensive as
each intermediate z(t−ϵ), and all network activations, have to be kept in
memory to compute the gradients. The memory cost can be alleviated by
using time reversible ODE solver, e.g., the reversible Heun method or the
asynchronous leapfrog method [105].

Adjoint ODE Chen et al. [40] de�ne an adjoint ODE, which has to be
solved to recover the gradients. In optimal control theory this is known as the
adjoint sensitivity method [157]. This approach has a higher computational
cost as two ODEs, i.e., Eqn. (2.18) from t = T to t = 0 and the adjoint ODE
from t = 0 to t = T , have to be solved for each optimization step. However,
the memory cost is lower than for the full discretization approach.

Flow Matching Recently, Lipman et al. [124] proposed a training
objective called �ow matching inspired by the denoising score matching used
for score-based di�usion models [189]. Flow matching is a simulation-free
framework and does not require any calls to an ODE solver during
training. This is a promising new direction, which allows to train continuous
normalizing �ows at a larger scale.
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Inverse
Computing the

log-det Jacobian

Linear Flow

Inv. Matrix matrix inversion, O(n3) full determinant, O(n3)

QR Flow fwd/bwd substitution, O(n2) sum over diagonal

PLU Flow fwd/bwd substitution, O(n2) sum over diagonal

Permutation transpose constant

Residual Flow

Contractive �xed-point iteration stochastic approximation

Matrix-Det-Lemma no analytical formulation O(M3 + nM2)1

Coupling Flow

Additive analytical inverse constant

A�ne analytical inverse sum over diagonal

Other Blocks

ActNorm analytical inverse sum over channels

Down/Upsampling analytical inverse constant

1 M ∈ N,M < n is the bottleneck dimension of the layer

Table 2.1: Comparison of the di�erent invertible components discussed in
Section 2.2 with respect to the computation of the inverse pass and the
log-det of the Jacobian. The dimensionality of the data is n ∈ N.

2.2 Construction of Invertible Networks

Normalizing �ows require invertible neural networks to facilitate likelihood
computation and training. As invertible transformations are composable, we
can build an expressive invertible network by stacking invertible layers on
top of each other. The full inverse can then be computed by inverting one
layer at a time. In this section, we will discuss several invertible components
used for normalizing �ows. An overview of invertible components discussed
in this section is provided in Table 2.1. The focus of this section lies on
architectures used in imaging applications, in particular for imaging inverse
problems. As a result, autoregressive �ows [110] are not covered. Here, we
refer to the review [151].
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2.2 Construction of Invertible Networks

2.2.1 Linear Flow Layers

Many invertible networks employ invertible linear layers in the architecture,
e.g., for a generalization of a permutation [107], as a scaling layer [57]
or to build orthogonal convolutions [67]. A linear �ow is de�ned by a
transformation

zout = Wzin, (2.20)

with an invertible matrix W ∈ Rn×n and zin, zout ∈ Rn. The
determinant of the Jacobian is given by the determinant of the matrix,
i.e., det JT (zin) = det(W). However, learning an invertible matrix is a hard
problem, as no continuous surjective parametrization of invertible matrices
exists [151]. Further, in general, inverting a linear layer is expensive as
the linear system zout = Wzin has to be solved for each inverse pass.
To address these challenges, most authors resort to structured invertible
matrices, which allow for e�cient invertibility and a simple calculation of
the determinant. As a �rst example, triangular matrices with non-negative
diagonal entries are employed as scaling layers [57]. Triangular matrices
have the advantage of a trivial determinant and the inverse has a similar
computational complexity (using forward/backward substitution) as matrix
multiplication. Other approaches are based on matrix factorization [151],
i.e., using a PLU [148] or QR decomposition [92]. For the PLU approach, we
setW = PLU with a permutation matrixP and a lower and upper triangular
matrix L and U, respectively. Generally, only L and U are learned, while the
permutation matrix P is drawn randomly and then �xed [148].

The QR �ow requires a parametrization of orthogonal matrices. Similar
to invertible matrices, there is no general representation. An orthogonal
matrix either has a determinant of 1 or −1, i.e., there exist two
separate islands of orthogonal matrices. Common parametrizations include
the exponential, Q = exp(B), or Caley map, Q = (I+B)(I−B)−1,
for a skew-symmetric matrix B [74]. A skew-symmetric matrix can
be parametrized as B = B̃− B̃

T
for any B̃ ∈ Rn×n. However, both

transformations have a computational complexity of O(n3) and thus do not
scale to high dimensions. To alleviate this problem, Tomczak et al. [202]
use the householder transformation. The matrix Q is given by a product
of K ∈ N householder matrices

Q =
K∏︂
k=1

H(k), H(k) = I− 2
v(k)(v(k))T

∥v(k)∥22
, (2.21)
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where v(k) is a vector with non-zero entries. Note that this decomposition is
not unique, e.g., any permutation of the vectors v(k) results in the same
matrix Q. This can result in di�culties during optimization [151]. The
application of orthogonal matrices in �ows is of interest due to the simple
inverse, i.e.,Q−1 = QT , and the trivial determinant. In particular, orthogonal
layers are often used as learnable generalizations of permutations.

Application to Images Matrix factorization approaches are generally not
e�cient when dealing with image data, i.e., in cases whereW is a convolution
matrix. While the forward pass is fast, calculating the inverse or determinant
requires a high computational e�ort. The Glow framework [107] introduces
invertible 1× 1 convolutions, which reduce to linear transformations applied
across channels, see also Eqn. (1.30). For an input image of size h×w with c
channels, the matrix W is only of size c × c and does not depend on the
spatial size of the image. As the number of channels is usually smaller than
the spatial dimension h×w, any of the matrix decomposition techniques can
be employed to parameterizeW. This approach has further been extended for
general convolutional layers in a framework called emerging convolutions [92].

2.2.2 Coupling Layers

Coupling layers are analytically invertible and computationally symmetric,
i.e., evaluation of the forward or inverse pass share the same
complexity [57, 58]. This property is particularly useful for the design of
normalizing �ows, as we do not have to balance sampling and training speed.
The invertibility is enforced by splitting the input into two parts, commonly
the input is split evenly. The �rst part is left unchanged, while the second
part is transformed based on the �rst part. Let z = [z1, z2] ∈ Rn be the input
into a coupling layer, such that z is split into z1 ∈ Rd and z2 ∈ Rn−d. The
output of a coupling layer is given by

zout1 = zin1

zout2 = G(zin2 ,m(zin1 )),
(2.22)

where G : Rn−d × V → Rn−d is an invertible coupling law with respect to
the �rst argument. The transformation m : Rd → V has no constraints.
In particular, it does not need to be invertible and can be implemented as
an arbitrary neural network. Two main types of coupling laws have been
studied in the literature: additive couplings [57] and a�ne couplings [58]. For
an additive coupling layer, we have V = Rn−d and the forward and inverse
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pass are given by

zout1 = zin1
zout2 = zin2 +m(zin1 )

⇔ zin1 = zout1

zin2 = zout2 −m(zout1 ).
(2.23)

Additive coupling layers are volume preserving, i.e., have a unit Jacobian
determinant. This hinders the expressivity of additive coupling layers and
they are often used in combination with scaling layers, i.e., an diagonal
matrix W ∈ Rn×n with non-zero diagonal entries [57]. A more expressive
coupling is given by the a�ne coupling law. Here, we set the codomain
as V = Rn−d × Rn−d with m(z) = [s(z), t(z)], where s(·) represents a
scaling and t(·) a translation. The forward pass is given by

zout1 = zin1
zout2 = zin2 ⊙ exp

(︁
s(zin1 )

)︁
+ t(zin1 ),

(2.24)

with an analytical inverse pass

zin1 = zout1

zin2 = exp(−s(zout1 ))⊙ (zout2 − t(zout1 )).
(2.25)

Let zout = T (zin) denote the forward pass of the coupling layer. The Jacobian

JT (z
in) =

⎛⎝ Id 0n−d

dzout2

dzin1

dzout2

dzin2

⎞⎠ (2.26)

is a block diagonal matrix and the Jacobian determinant can be computed
by only considering the lower right block, i.e.,

det JT (z
in) = det

dzout2

dzin2
:= det Jz2 . (2.27)

Both the additive and a�ne coupling law are designed such that the
Jacobian JT (zin) is a lower triangular matrix. In particular, for the additive
coupling law Jz2 is the identity and thus o�ers an e�cient determinant. For
the a�ne coupling law, the Jacobian determinant can be computed as

det
dzout2

dzin2
= det diag

(︁
exp

(︁
s(zin1 )

)︁)︁
=

n−d∏︂
i=1

exp
(︁
s(zin1 )i

)︁
, (2.28)

which does not require any additional computation as s(zin1 ) is already
computed in the forward pass of the coupling layer. Both coupling laws result
in a very sparse Jacobian with only a dense lower left block.

The �rst input zin1 to a coupling layer is always unchanged. This requires
that after each coupling layer some permutation of the entries in zout has to
be performed [57]. Further, due to the sparsity of the Jacobian coupling-based
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models require a large number of blocks, for example Glow has 96 coupling
blocks [107], to build expressive transformations, which slows down training.
The HINT [115] framework de�nes a recursive coupling block by repeatedly
splitting the subsets and de�ning sub-couplings for each split, to enable
expressive transformations with a smaller number of coupling blocks.

2.2.2.1 Application to Images

Many successful normalizing �ow architectures for images are based on
coupling layers, see [12, 58, 107] or [52]. In imaging applications the input
to the coupling layer zin is an image with spatial dimensions h × w and c

channels. The RealNVP framework [58], which popularized the use of
coupling layers for normalizing �ows, proposed two types of splitting the
input image. For the �rst type, the input zin is split across the channels to
produce zin1 and zin2 with c1 and c2 (with c1 + c2 = c) channels, respectively.
The second splitting type is based on a checkerboard pattern, similar to
the checkerboard downsampling to be discussed in Section 2.2.4. However,
this second splitting was not used in later architectures, see for example
Glow [107]. Further, the transformation m(·), i.e., s(·) and t(·) for a�ne
coupling, are implemented as CNNs. Figure 2.1 is a schematic description of
the additive coupling layer with channel splitting.

Additive CouplingSplit Channels Concatenate Channels

Figure 2.1: Schematic description of the additive coupling block for images.
Here, we assume that the number of channels is even. In the �rst step, the
input image zin is split across channels into zin1 and zin2 . This serves as the
input to the additive coupling block. The output is then again concatenate
on the channels.
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2.2.2.2 Conditional Coupling Layers

To introduce conditional variables y ∈ Rm to the coupling layer, we can
extend the sub-network m : Rn × Rm → V with an additional input. A
conditional coupling block is then de�ned by

zout1 = zin1

zout2 = G(zin2 ,m(zin1 ,y)),
(2.29)

with the same properties as the unconditional coupling layer in Eqn. (2.22),
i.e., analytical inverse and block diagonal Jacobian. As discussed in
Section 2.1.2, in many applications the measurements y are not directly used
as an input to the �ow model, but rather some preprocessed inputs h(y), for
example, adjoint data with h(y) = A∗y [150].

These conditional coupling layers resemble Feistel networks used in
cryptography [135]. In this context z is the text to encrypt and y is the
key. Feistel networks have an important advantage that they are trivially
invertible, i.e. the key y is known, but the forward pass, i.e. the encryption,
can be made as complicated as possible, as the transformation m does not
have to be invertible.

2.2.3 Invertible Residual Layers

Another way of enforcing invertibility is by combining residual layers [87]
with Lipschitz constraints to create invertible residual layers [25, 41]. These
layers are of the form

zout = G(zin) = zin + fθ(z
in), (2.30)

with Lip(fθ) = L < 1. Invertible residual layers do not have to rely on
dimension splitting, thus all dimensions can in�uence each other. Further,
by the Lipschitz constraint, we get stability estimates for both the forward
and inverse pass

Lip(G) ≤ 1 + L, Lip(G−1) ≤ 1

1− L
. (2.31)

However, instead of having an explicit inverse, the inverse has to be computed
via a �xed-point iteration for each inverse pass. We can recover zin as the
limit of

z(k+1) = zout − fθ(z
(k)) k = 0, 1, 2, . . . , (2.32)

which converges for every z(0) ∈ Rn. Behrmann et al. [25] propose to initialize
the �xed point iteration with z(0) = zout.
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2.2.3.1 Enforcing the Lipschitz constraint

To ensure invertibility, the residual function fθ has to satisfy the Lipschitz
constraint. The task of constraining the Lipschitz constant of a neural
network has been explored in the broader domain of deep learning. In
CLIP [34] an additional penalty term is added to the loss function during
training, penalizing high Lipschitz constants. Similar penalties are also
employed in the adversarial regularizer [128] or in Wasserstein GANs [79]
to learn 1-Lipschitz functions. However, these penalty approaches do not
guarantee that the Lipschitz constraint is ful�lled. Behrmann et al. [25]
use simple feed-forward networks, i.e., fθ(x) = W3ϕ2(W2ϕ1(W1x)), with
contractive non-linearities ϕ1, ϕ2 to parametrize the residual network. For
networks structured in this manner, the Lipschitz constant can be estimated
as the product of the weight matrices

Lip(fθ) ≤ ∥W3∥2∥W2∥2∥W1∥2. (2.33)

By enforcing ∥Wi∥2 < 1 for each layer, one can guarantee invertibility.
Behrmann et al. [25] estimate the norm after each training step and
renormalize the weights if necessary. Arndt et al. [14] extend this approach
to directly parameterize the weight matrices so that they consistently satisfy
this constraint.

In imaging applications, the residual network fθ is usually implemented
as a shallow CNN [25, 41]. The Lipschitz constraint is enforced for each layer
by estimating the spectral norm using a power-iteration [138].

2.2.3.2 Jacobian determinant

There is no known e�cient algorithm to compute the exact Jacobian
determinant of an invertible residual layer. Explicitly constructing the
full Jacobian, using automatic di�erentiation, and then computing the
determinant is computationally infeasible for high dimensional data.
Behrmann et al. [25] write the Jacobian determinant as a power series

log | det JG(z)| = log | det(I+ Jfθ(z))| =
∞∑︂
k=1

(−1)k+1

k
Tr

(︁
Jkfθ(z)

)︁
, (2.34)

where the trace of the Jacobian can be estimated using the Hutchinson trace
estimator [94]

Tr
(︁
Jkfθ(z)

)︁
≈ vTJkfθ(z)v, (2.35)
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where v is a random vector with zero mean and unit covariance, typically
chosen as a standard Gaussian or Rademacher distribution. The power series
is approximated by only evaluating terms up toK ∈ N to obtain the estimate

log | det JG(z)| ≈
K∑︂
k=1

(−1)k+1

k
vTk J

k
fθ
(z)vk, vk ∼ pv(v), (2.36)

where the Jacobian-vector product can be computed using automatic
di�erentiation functionalities, without the need to construct the full
Jacobian [153]. The �xed truncation of the power series results in a biased
estimator, which can hinder maximum likelihood training. By using a
so-called Russian roulette estimator, i.e., letting the truncation be random
and re-weighting the terms, the estimator can be made unbiased [41]. Similar
techniques can be used to directly approximate the gradient with respect to
the parameters θ of the Jacobian determinant [41].

2.2.3.3 Matrix Determinant Lemma

Another way of reducing the computational complexity of the Jacobian
determinant is through the use of the matrix determinant lemma [151]. The
matrix determinant lemma

det
(︁
In +VWT

)︁
= det

(︁
IM +WTV

)︁
, (2.37)

with V,W ∈ Rn×M and M << n [151], only requires to compute the
determinant of a smaller M ×M matrix. Thus, for transformations of the
form

zout = zin +Vσ(WTzin + b), (2.38)

the computational complexity for evaluating the Jacobian determinant can
be greatly reduced if M is chosen small. A variety of methods, e.g., planar
�ows [164], Sylvester �ows [30] and radial �ows [196], rely on this property.
To ensure invertibility, techniques from linear �ow layers (see Section 2.2.1)
can be employed. Note, that while these layers are invertible, the inverse
cannot be given analytically. Flow models based on the matrix determinant
lemma commonly parameterize the inverse T −1

θ , allowing for a fast training
and likelihood computation.
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2.2.3.4 Conditional Residual Layers

We can implement conditional residual layers by introducing an additional
input y to the residual function, i.e.

zout = G(zin) = zin + fθ(z
in,y). (2.39)

To ensure invertibility, the Lipschitz constant of the residual layer has to be
less than one for all possible conditional inputs, i.e., Lip(fθ(·,y)) < 1 for
all y ∈ Rm.

2.2.4 Invertible Up- and Downsampling

Down- and upsampling operations are an important part of CNNs and are
extensively used in many architectures, for example, the U-Net [168]. Thus,
one wants to adopt these concepts for invertible architectures. However, by
itself down- and upsampling is not invertible. However, there are invertible
extensions. All of them have in common, that the total number of dimensions,
i.e., the product of spatial dimensions and channels, has to be kept constant.
In most practical applications, the spatial dimension is reduced by a factor
of 2, and the channel dimension is increased by a factor of 4 for invertible
downsampling operations. There are three main methods, which are currently
in use by invertible architectures. Dinh et al. [58] propose a �xed pixel shu�e
in a checkerboard pattern. However, this can result in artifacts in the �nal
image, as values from di�erent channels are mixed. Ardizzone et al. [12]
propose to use an orthogonal convolution, based on haar-wavelets. This idea
is generalized by Etmann et al. [67] to learnable down- and upsampling
operations. Here, they make use of the Caley map to parametrize orthogonal
matrices, as discussed in Section 2.2.1 for linear �ow layers. As the resulting
convolution is orthogonal, the inverse is given by the transposed convolution
and the log-determinant of the Jacobian is constant.

2.2.5 Normalization

Normalization is often used to accelerate and stabilize the training of
deep neural networks [75]. Most normalization techniques, like batch
normalization [96], are trivial to invert. Batch normalization can be expressed
as a linear layer

zoutc =
zinc − µ̃c√︁
σ̃2
c + ϵ

, c = 1, . . . , C, (2.40)
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where the batch statistics, i.e., the mean µ̃c and variance σ̃2
c , are calculated

for each channel c and ϵ > 0 is a small numerical constant. The Jacobian
determinant is given by

C∏︂
c=1

(σ̃2
c + ϵ)−1/2. (2.41)

This form of Batch normalization was successfully employed in the RealNVP
framework [58]. However, due to memory constraints normalizing �ows
are often trained with small batches, which can lead to an inaccurate
estimate of the batch statistics. To address this problem ActNorm [107] was
proposed. Instead of tracking the batch statistics µ̃c and σ̃

2
c during training,

they are initialized using the �rst mini-batch and then treated as regular
trainable parameters. By integrating ActNorm layers into the architecture,
the intermediate outputs have a mean of zero and a standard deviation of
one at the start of training.

2.2.6 Multi-scale Architecture

Multi-scale image representation is a powerful concept in image processing
that involves representing the image at di�erent scales or levels of detail.
It is widely used in image pyramids [2], scale-space theory [123], or wavelet
processing [126]. This type of multi-scale processing is also an integral part of
convolutional neural networks, which often use pooling layers to reduce the
spatial dimensions of the image [182], see also the design of the U-Net [168].
With a similar reasoning, multi-scale architectures for normalizing �ows were
proposed in the RealNVP framework [58] and are an integral part of many
successful invertible neural networks, for example, Glow [107] or the invertible
U-Net [67].

The multi-scale architecture de�nes a hierarchical feature space, where
some variables are factored out at an earlier level of the �ow, see Figure 2.2 for
a schematic visualization. At each scale, multiple invertible transformations
are combined in a transformation f (i). The transformation f (i) commonly
includes an invertible downsampling operation to transform the h × w × c

image to a shape of h/2 × w/2 × 4c. In RealNVP, half of the channels are
directly forwarded to the output, and the other half is passed to the next
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Figure 2.2: Schematic example of a three level multi-scale architecture. The
red arrows denote invertible transformations and the blue arrows denote the
splitting of dimensions and forwarding to the output.

transformation. This can be recursively de�ned as

h(0) = x

(h(i+1), z(i+1)) = f (i+1)(h(i)), i = 0, . . . , L− 2

z(L) = f (L)(h(L−1))

z = (z(1), . . . , z(L)),

(2.42)

where the �nal output z is de�ned as the concatenation of all
intermediate z(i). An example of a combination of invertible transformation
used in RealNVP is provided in Figure 2.3.

As a result of this architecture, the model has to di�erentiate between
�ner features, factored out earlier, and coarser features, factored out
later. As an additional practical bene�t, the loss is distributed across the
network, similar to intermediate layer guidance used in deeply supervised
networks [120, 122]. Moreover, due to the smaller spatial size of intermediate
activations, these architectures have a reduced memory cost and computation
time. As a consequence, using this type of multi-scale architecture makes
it possible to train deeper �ow-based models. As an alternative, a fully
invertible variation of the U-Net has been proposed by Etmann et al. [67]
sharing similar computational advantages.

2.3 Application to Inverse Problems

In this section, we will discuss several ways of exploiting invertible neural
networks for inverse problems. The applications can generally be classi�ed
into two groups: generative modeling and operator learning. For generative
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Figure 2.3: Operations for one scale in RealNVP [58]: First three coupling
layers with permutations are used, then an invertible downsampling operation
is performed, and �nally three more coupling layers with permutations are
applied. The �rst half of the output h(i+1) is passed to the next scale, and
the second half z(i+1) is directly forwarded to the �nal output.

modeling, we can make use of invertible neural networks to build normalizing
�ow and use them for VI, learning the prior or estimating a posterior
from a given dataset. Invertibility can also be used as an analytical tool to
learn operators. In particular, as both the forward and inverse are Lipschitz
continuous, we can estimate bi-Lipschitz function and learn regularizers for
inverse problems, see Section 2.3.4.

2.3.1 Variational Inference

Normalizing �ows are a promising class of probabilistic models for
VI [180, 194]. As discussed in Section 1.1.2, the goal in VI is to �nd a
tractable approximation of some known, but intractable, posterior ppost(x|y)
by minimizing the discrepancy between the probabilistic model and the
posterior. This discrepancy is usually measured with respect to the reverse
KL divergence

DKL(pθ(x)||ppost(x|y)) = Ex∼pθ(x)[− log ppost(x|y) + log pθ(x)], (2.43)

where pθ(x) is de�ned by a normalizing �ow [31]. Given an invertible neural
network Tθ : Rn → Rn, with x = Tθ(z) and z ∼ pz(z), the optimization
problem reduces to

min
θ

{︁
LVI(θ) = Ez∼pz(z)[− log ppost(y|Tθ(z))− log | det JTθ(z)|]

}︁
, (2.44)

where all term independent of θ have been dropped. The negative
log-determinant of the Jacobian in Eqn. (2.44) is related to the negative
entropy of the �ow-based model and acts as a regularization term. Without
taking this term into account, the normalizing �ow would recover the MAP
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solution. Sun et al. [194] introduce an additional parameter β > 0

min
θ

{︁
Lβ-VI(θ) = Ez∼pz(z)[− log ppost(y|Tθ(z))− β log | det JTθ(z)|]

}︁
, (2.45)

where a large β results in a larger entropy for pθ(x), thus increasing the
diversity of samples.

The optimization is usually performed with gradient descent, requiring an
estimating of the gradient∇θLVI(θ). Given a set of samples {z(i)}Ni=1 from the
base distribution, this gradient can be obtained via a Monte Carlo estimation

∇θLVI(θ) ≈
N∑︂
i=1

(︁
−∇θ log p

post(y|Tθ(z(i)))−∇θ log det JTθ(z
(i))

)︁
, (2.46)

where both the gradient of the posterior and the gradient of the log-det term
can be computed via backpropagation. Usually, for each training step a new
set of samples {z(i)}Ni=1 is drawn to estimate the gradient [151].

A particularly interesting special case are linear inverse problems with
additive Gaussian noise, where we again exploit Bayes' theorem to decompose
the posterior into likelihood and prior. Assuming additive Gaussian noise and
a Gibbs prior [103], the likelihood and prior are given by

plkhd(y|x) ∝ exp

(︃
− 1

2σ2
∥Ax− y∥22

)︃
, π(x) ∝ exp

(︁
−λ∥Lx∥22

)︁
, (2.47)

for some matrix L. By imposing a base distribution pz ∼ N (0, I), we arrive
at the objective

min
θ

Ez∼N (0,I)

[︃
1

2σ
∥ATθ(z)− y∥22 + λ∥LTθ(z)∥22 − log det JTθ(z)

]︃
. (2.48)

VI only requires a single measurement y and has similar computational
requirements as the DIP (cf. Section 1.4.4). The VI framework can be
extended to a variety of priors. For example, Siahkoohi et al. [180] �rst learn
model the prior π(x) with a �ow-based models given a dataset {x(i)}Ni=1 of
images from our target domain. In the second step, this learned prior is �xed
and a normalizing �ow is trained to approximate the resulting posterior.

A drawback of VI is the high computational cost, as the normalizing
�ow has to be retrained for every new measurement y. To reduce the
computational cost, conditional �ow-based models can be employed to
perform amortized VI [108, 131, 150]. In amortized VI, we assume access
to a dataset of measurements {y(i)}Ni=1 and learn a conditional normalizing
�ow with y(i) as an additional input. The objective function in Eqn. (2.44)
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has to be changed to include the measurements

min
θ
{La-VI(θ) =

Ey∼py(y)Ez∼pz(z)[− log ppost(Tθ(z,y)|y)− log | det JTθ(z;y)|]},
(2.49)

where the Jacobian is only computed with respect to the base variable z.
After the initial training phase, the posterior for a new measurement can
be approximated with the trained conditional normalizing �ow, without the
need for re-training.

2.3.2 Learning the Prior

We follow the setting introduced in Section 1.4.2. We assume, that a
dataset {x(i)}Ni=1 with x(i) ∼ pdata(x) i.i.d., is available. By minimizing the
negative log-likelihood

Lnll(θ) =
1

N

N∑︂
i=1

(︃
1

2
∥T −1

θ (x(i))∥22 − log | det JT −1
θ

(x(i))|
)︃
, (2.50)

with a Gaussian base distribution, we can train a normalizing �ow to
approximate the unknown data distribution, see also Section 2.1. This trained
prior can be integrated in several downstream applications. Most works
focus on the integration of a normalizing �ow prior in MAP estimation,
see [18, 89, 114, 211, 212] or [7]. However, normalizing �ow priors have
recently also been used in Langevin sampling [35]. In the MAP approach, the
negative log-likelihood of the trained normalizing �ow is used as a regularizer:

x̂ = argmin
x∈Rn

− log plkhd(y|x)− log pθ(x). (2.51)

Due to the invertibility of the normalizing �ow, one can formulate this
optimization problem in the latent space [18, 89], i.e.,

ẑ = argmin
z∈Rn

− log plkhd(y|Tθ(z))− log pz(z), (2.52)

and obtain the �nal reconstruction as x̂ = Tθ(ẑ). In the case of a Gaussian
base distribution and a Gaussian noise model Eqn. (2.52) reduces to

ẑ = argmin
z∈Rn

1

2σ2
y

∥ATθ(z)− y)∥22 + γ∥z∥22, (2.53)

where γ > 0 is an additional penalty parameter. It has been observed
that optimizing over the latent space, instead of the pixel domain, is
less challenging [211]. However, as the normalizing �ow Tθ can become
unstable (cf. exploding Lipschitz constant, see Section 2.1.1.3) when learning
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multi-modal distributions, naively optimizing over the latent space may lead
to degraded or distorted reconstructions [18, 89].

To address this problem, several regularization strategies and
optimization techniques have been proposed. For example, the non-linear
optimization problem in Eqn. (2.52) is initialized with z0 = 0 [18],
which corresponds to the maximum likelihood z in latent space. This
initialization ensures a starting point in a relatively high likelihood region.
Another approach is to regularize the learned mapping Tθ by adding
speci�c regularization to the training loss. For example, in addition to the
negative-log likelihood Lnll(θ) a latent-noise loss Lln(θ) = ∥Tθ(z+η)−Tθ(z)∥
with z = T −1

θ (x) and random noise η has been used [89]. This latent-noise
loss encourages similar elements in latent space, to be mapped to similar
images, essentially constraining the Lipschitz constant of Tθ. The magnitude
of the noise η connects to the strength of this regularization.

Further, some techniques speci�cally exploit the multi-scale architecture
used for many normalizing �ow models. In coarse-to-�ne optimization [89] the
authors directly use the decomposition of the base variable z = (z1, . . . , zL),
where zL is the split output from the last layer relating to the coarse structure
of the image. They de�ne a sequence of optimization problems

ẑk = argmin
zk

1

2σ2
y

∥ATθ(z)− y)∥22 + γ∥zk∥22

with z = (z̄1, . . . , z̄k−1, zk, ẑk+1, . . . , ẑL),

(2.54)

for k = L, . . . , 1. Here ẑk+1, . . . , ẑL are �xed from the prior optimization
problems and z̄1, . . . , z̄k−1 are taken as the mean values from the training
data. This means, that for each optimization problem in this sequence, only
one part of the base variable is optimized.

A large collection of images {x(i)}Ni=1 is needed to train a suitable
prior. This problem is not inherent to normalizing �ows, but rather has
been observed in many image prior models, where it is often tackled by
the use of patch-based priors [170, 220]. In the �eld of normalizing �ows,
patch-based methods have been explored by Helminger et al. [89]. However,
in the reconstruction step, they reconstruct all image patches individually,
which only works for local image degradations, i.e., denoising, deblurring, or
inpainting. In PatchNR [7], we also train a normalizing �ow on image patches
but use an all-at-once approach to reconstruction.
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2.3.3 Learning the Posterior

The task of learning the posterior with normalizing �ows is similar to
learning a prior. As discussed in Section 2.1.2, for each �xed y ∈ Rm

the transformation Tθ(·,y) de�nes a normalizing �ow. Using a paired
dataset {(x(i),y(i))}Ni=1, we can train the conditional �ow-based model using
an empirical approximation to Eqn. (2.14)

Lnll(θ) ≈
1

N

N∑︂
i=1

(︂
− log pz(T −1

θ (x(i),y(i)))− log | det JT −1
θ

(x(i);y(i))|
)︂
.

(2.55)
For the typical choice of a Gaussian base distribution, we get:

Lnll(θ) ≈
1

N

N∑︂
i=1

(︃
1

2
∥T −1

θ (x(i),y(i))∥22 − log | det JT −1
θ

(x(i);y(i))|
)︃
. (2.56)

This approach is entirely data-driven as in this training loss no information of
the forward operator A is used. As already pointed out in Section 2.1.2, most
approaches do not use the measurements y directly as an input, but rather
some sort of preprocessing. Di�erent forms of preprocessing were for example
applied for computed tomography reconstruction [52], magnetic resonance
imaging [53], photoacoustic imaging [150] and seismic imaging [181]. Using
adjoint preprocessing, the loss function further reduces to

Lnll(θ) ≈
1

N

N∑︂
i=1

(︃
1

2
∥T −1

θ (x(i),A∗y(i))∥22 − log | det JT −1
θ

(x(i);A∗y(i))|
)︃
.

(2.57)
The trained conditional normalizing �ow can be used to compute the
conditional mean as the reconstruction. The conditional mean can be
computed as

x̂CM =
1

K

K∑︂
i=1

Tθ(z(i),A∗y), z(i) ∼ pz(z), (2.58)

for a new measurement y ∈ Rm. Even with this preprocessing, there is no part
in the training process directly enforcing data consistency. Nonetheless, in
the evaluation of the LoDoPab-CT challenge, we found that this conditional
mean reconstruction has a similar data consistency to other data-driven
approaches, see Table 3 in [121].

It is important to distinguish the di�erence between general
conditional density estimation and posterior estimation. Estimating the
posterior ppost(x|y) given samples is a di�erent task than estimating some
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other conditional density as the posterior comes with a lot of stability
estimates. In most statistical inverse problems, the posterior is robust to
changes in y with respect to the Hellinger metric [193]. Latz [117] extends
this stability also to other metrics. These estimates hold in particular for
the example of linear inverse problems with additive Gaussian noise. These
stability estimates were recently extended to other conditional generative
models [8]. However, the extension to conditional normalizing �ows is still
missing.

2.3.4 Operator Learning

Besides the applications for statistical inverse problems, invertible neural
networks can also be used in the functional analytic framework, where
some works studying the approximation capabilities of invertible networks.
Teshima et al. [199] show that a�ne coupling �ows are Lp-universal
approximators for C2 di�eomorphism. Roughly speaking, for any C2

di�eomorphism g, there exist an a�ne �ow f , such that ∥f − g∥p,K < ϵ

for any ϵ > 0 and any compact subset K. Here ∥ · ∥p,K is the Lp norm
restricted to K. This result also extends to distributional universality, which
is of interest for generative modeling. In a recent work, Lyu et al. [130] claim
even universality for Ck di�eomorphisms even in the Ck norm. However, they
need a lifting to higher dimensions, i.e., a padding with zeros, to achieve this.
Both of these results give no rate of the approximation, for example in terms
of the number of a�ne coupling blocks.

These theoretical works give justi�cation that bi-Lipschitz functions can
be reasonably well approximated using invertible neural networks. Recently
Jin et al. [98] showed speci�c approximation rates for bi-Lipschitz functions
by an explicitly constructing of the invertible mapping. They use an invertible
neural network Tθ to learn both the forward operator F : X → Y and the
inverse F−1 : Y → X at the same time using a dataset {(x(i),y(i))}Ni=1 with
a joint reconstruction loss

min
θ

1

N

N∑︂
i=1

(︁
∥Tθ(x(i))− y(i)∥2Y + ∥T −1

θ (y(i))− x(i)∥2X
)︁
. (2.59)

Further, they propose an approach for approximating bi-Lipschitz functions
on in�nite-dimensional spaces by combining model reduction using principal
component analysis with an invertible neural network mapping.

An application to linear inverse problems has been explored by
Arndt et al. [14]. In the discrete setting, we work with a linear forward
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operator A : Rn → Rm, usually with m < n. Approximating the forward
operator in itself using an invertible neural network is only feasible in the
setting of n = m, i.e., if the dimensions of the input and output space are
the same. As a consequence, in our work, we study approximations to the
normal equation Tθ ≈ ATA and implement Tθ as a one-block invertible
residual network. Solving the inverse problem is then a two-step process:

1) Training the invertible neural network on a supervised dataset
{(x(i),y(i))}Ni=1:

min
θ

1

N

N∑︂
i=1

∥Tθ(x(i))−ATy(i)∥22

with Tθ(x) = x− fθ(x), Lip(fθ) ≤ L < 1.

(2.60)

2) Using T −1
θ to obtain a reconstruction for new measurements y:

x̂ = T −1
θ (ATy). (2.61)

The maximum Lipschitz constant L is a design choice and is related to the
Lipschitz constant of the inverse via Lip(T −1

θ ) ≤ 1/(1 − L). Increasing the
Lipschitz constant leads thus to a higher expressiveness, but also decreases
robustness and thus sensitivity to noise. By varying the Lipschitz constant L,
we de�ne a family of reconstructions RL = T −1

θ,L ◦ AT , where L acts as a
regularization parameter andRL is a regularizer. This regularization depends
both on the architecture of the residual network fθ and the training data used.
Recently, this analysis was extended to di�erent training approaches and loss
functions [15].

2.4 Score-based Di�usion Models

Score-based di�usion models are the current state of the art for generative
modeling [55, 189]. They emerged as a new interpretation of denoising
di�usion probabilistic models [91, 184] and score-matching Langevin
dynamics [187]. The training of a normalizing �ow is set up in a way, that
images are transformed into noise by T −1

θ . By learning this image-to-noise
map with an invertible transformation, we implicitly get access to the
noise-to-image mapping, necessary for sampling. For score-based di�usion
models, we go the other way around: We set up a �xed forward process to
transform images into noise and learn to invert this process step by step. For
this presentation, we follow the notation introduced in [189].
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The forward process, i.e., transforming images into noise, is de�ned as
an Itô stochastic di�erential equation (SDE) [175]. This forward di�usion
process takes a sample of the data distribution and perturbs it with noise
according to

dxt = f(xt, t)dt+ g(t)dwt, x0 ∼ p0 := pdata, (2.62)

where {xt}t is a stochastic process indexed by time t and {wt}t is Brownian
motion. Through this SDE a time-dependent density p(xt) is imposed, where
we write pt(xt) := p(xt) to explicitly emphasize this time dependency. The
drift function f(·, t) : Rn → Rn and the di�usion function g : Rn → R de�ne
how the time-dependent density pt(xt) evolves over time.3 Drift and di�usion
functions are chosen in such a way that the terminal distribution at t = T

approximates a standard Gaussian, i.e., pT ≈ N (0, I), or another tractable
distribution.

Under weak assumptions4, there exist a reverse di�usion process [10],
mapping noise to the data distribution. This reverse di�usion process is given
as

dxt = [f(xt, t)− g(t)2∇x log pt(xt)]dt+ g(t)dw̃t, (2.63)

where {w̃t}t is a time-reverse Brownian motion and the SDE is solved
backward in time. The term ∇x log pt(xt) is called the score function and
plays a central role in score-based di�usion models.

The goal in score-based generative modeling is to train a neural network,
called the score model, to approximate this score function by minimizing the
explicit score matching (ESM) objective

LESM(θ) = Et∼U [0,T ]Ext∼pt(xt)
[︁
ωt∥sθ(xt, t)−∇x log pt(xt)∥22

]︁
. (2.64)

However, as the score function is generally unknown, this optimization
problem is intractable. Already in 2005, Hyvarinen [95] proposed an implicit
score matching objective, circumventing the evaluation of the score function.
Vincent [210] provides a connection between implicit score matching and
training a denoiser, proposing denoising score matching (DSM). In the DSM

3Note that the di�usion function can be further generalized to matrix-valued

functions G : Rn × R → Rn×n, with an additional dependence on xt, see Appendix A

in [189].
4The drift function f is usually chosen as f ≡ 0 [189] or as a linear function in x [91].

Both choices satisfy the assumptions in [10].
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framework, the time-conditional neural network sθ(xt, t) is trained using

min
θ

{︁
LDSM(θ)

= Et∼U [0,T ]Ex0∼pdata(x)Ext∼pt(xt|x0)

[︁
ωt∥sθ(xt, t)−∇x log pt(xt|x0)∥22

]︁ }︁
,

(2.65)

where ωt > 0 are weighting factors, balancing the di�erent time steps.
Vincent [210] proves, that LDSM(θ) and LESM(θ) have the same minimizer.
This result is remarkable as it shows that it is su�cient to only match
the transition densities pt(xt|x0) to approximate the full density pt(xt). For
SDEs with an a�ne linear drift the transition densities are Gaussians and
have closed-form expressions, making Eqn. (2.65) e�cient to evaluate [175].
The two most widely used SDEs are the variance preserving SDE [91]
and the variance exploding SDE [187], both of which result in transitions
densities pt(xt|x0) = N (xt; γtx0, ν

2
t I), where γt, νt can be computed from the

drift and di�usion functions. For these SDEs, we can simplify the loss function
to

LDSM(θ) = Et∼U [0,T ]Ex0∼pdataEz∼N (0,I)

[︄
ωt

⃦⃦⃦⃦
sθ(xt, t) +

z

νt

⃦⃦⃦⃦2

2

]︄
, (2.66)

with xt = γtx0 + νtz and z ∼ N (0, I). For the choice of ωt = ν2t , the DSM
objective (plus an additional constant independent of θ) is an upper bound
of the negative log-likelihood

−Ex∼pdata(x)[log pθ(x)] ≤ LDSM(θ) + C, (2.67)

where C is a constant and pθ(x) the probabilistic model de�ned by the reverse
SDE, see [188, Corollary 1].

To highlight the connection between denoising and training the score
model, we can make use of a result by Tweedie [62]. Given a trained score
model, the minimum mean-squared-error denoiser is given by

E[x0|xt] =
xt + ν2t∇x log pt(xt)

γt
≈ xt + ν2t sθ(xt, t)

γt
:= x̂0(xt). (2.68)

Further, given a trained denoiser D(xt, t) ≈ x0, we can recover the score
model as

sθ(xt, t) ≈
γtD(xt, t)− xt

ν2t
. (2.69)

The equivalence between denoising and score modeling has been successfully
utilized for Bayesian inverse problems and included in Langevin sampling
algorithms [101, 102, 118]. Sampling from a score-based di�usion model
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requires solving the reverse SDE with the score model in-place of∇x log pt(xt)

dxt = [f(xt, t)− g(t)2sθ(xt, t)]dt+ g(t)dw̄t. (2.70)

Here, Euler-Maruyama [189] is one of the most basic methods for
discretization of the resulting SDE. Starting with xT ∼ pT , the
Euler-Maruyama sampling update is given by

xt−∆t = xt−[f(xt, t)−g(t)2sθ(xt, t)]|∆t|+g(t)
√︁

|∆t|z, z ∼ N (0, I), (2.71)

which decomposes into an explicit Euler update and adding noise at each
iteration. For high-quality samples, usually a small time step |∆t| is required,
requiring a high number of iterations and evaluations of the score model.
There has been a lot of research in reducing the number of sampling, for
example by using denoising di�usion implicit models [185].

2.4.1 Connection to Continuous Normalizing Flows

The perturbation with the SDE is connected to a di�usion of the density
function via the Fokker-Planck equation [32, 175]:

dp(x, t)

dt
= −

n∑︂
i=1

∂

∂xi
(fi(x, t)p(x, t)) +

n∑︂
i=1

n∑︂
j=1

∂2

∂xj∂xi

g(t)2

2
p(x, t), (2.72)

where p(x, t) is the (now) time dependent density with p(x, t = 0) = pdata(x)

and f = (f1, . . . , fn) and g are drift and di�usion functions, respectively. The
Fokker-Planck equation can be reformulated as

dp(x, t)

dt
= −

n∑︂
i=1

∂

∂xi

[︃(︃
fi(x, t)−

g(t)2

2
(∇x log p(x, t))i

)︃
p(x, t)

]︃
. (2.73)

This means that the SDE in Eqn. (2.62) has the same marginal
densities p(x, t) as the following ODE

dx =

[︃
f(x, t)− g(t)2

2
∇x log p(x, t)

]︃
dt, (2.74)

which is referred to as the probability �ow ODE [189]. In this way,
the probability �ow ODE de�nes a continuous normalizing �ow. The
continuous normalizing �ow framework, as presented in Section 2.1.3, has the
disadvantage of a slow maximum likelihood training, i.e., two ODEs have to
be solved for each optimization step when using the adjoint ODE for gradient
computation. Using this probability �ow ODE together with denoising score
matching o�ers a simulation-free training of the model.
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By exploiting the connection of ODEs to SDEs one can compute the
likelihood as

log p0(x(0)) = log pT (x(T )) +

∫︂ T

0

div(f̃(x, t))dt, (2.75)

with f̃(x, t) = f(x, t)− g(t)2

2
∇x log pt(x, t). Note that continuous normalizing

�ows and score-based generative models usually de�ne the time the other way
around. For score-based di�usion models, we start at t = 0 with the data
distribution pdata(x), and for t = T , we arrive at pT (x(T ), T ) ≈ N (x(T );µ,Σ)

which should approach some Gaussian (the �nal form depends on the forward
SDE). For continuous normalizing �ows, we usually de�ne it the other way
around, i.e., we start at t = 0 with the base distribution. However, this simply
corresponds to a di�erent parametrization.

Sampling from the corresponding probability �ow ODE requires to
simulate Eqn. (2.74) backwards in time, starting at x(T ) ∼ pT . For the
ODE simulation, any o�-the-shelf ODE solver can be used. However, samples
from the corresponding probability ODE often have a lower visual quality
than samples from the reverse SDE. The gap between the ODE and SDE
formulation, and particularly the impact on sampling, has recently been
explored [54].

2.4.2 Application to Inverse Problems

Score-based di�usion models can be used to estimate the posterior ppost(x|y).
Either the posterior can be directly modeled by a conditional score-based
di�usion model (see e.g. [24]) or the score-based di�usion model can be used
to learn the prior π(x) [189]. A score-based di�usion model for the posterior
requires drawing samples from the reverse SDE

dxt = [f(xt, t)− g(t)2∇xt log pt(xt|y)]dt+ g(t)dw̄t, (2.76)

with a time-dependent posterior score∇xt log pt(xt|y). Using Bayes' theorem,
the time-dependent posterior can be decomposed in

∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt)
≈ sθ(xt, t) +∇xt log pt(y|xt),

(2.77)

where sθ(xt, t) is a score model trained to approximate the prior π(x)

and ∇xt log pt(y|xt) is the time-dependent likelihood. In particular, sθ(xt, t)
can be pre-trained and is independent of the inverse problem under
consideration, i.e., it can be reused for di�erent tasks.

Using the pre-trained unconditional score model sθ(xt, t) for posterior
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estimation, requires to evaluate the time-dependent likelihood. However, this
time-dependent likelihood is intractable as it can be factorized as

pt(y|xt) =
∫︂
Rn
plkhd(y|x0)p(x0|xt)dx0 (2.78)

and this high-dimensional integral is hard to compute. To still enable
posterior sampling, di�erent approximations were proposed. For example in
some works [97, 160] the time-dependent likelihood is simply approximated
with the scaled likelihood as

∇xt log pt(y|xt) = λt∇xt log p
lkhd(y|xt), (2.79)

with a time-dependent penalty λt. Chung et al. [44] propose DDS and make
use of Tweedie's formula, cf. Eqn.(2.68), to obtain x0̂(xt) ≈ E[x0|xt] and use
the approximation

∇xt log pt(y|xt) ≈ ∇xt log p
lkhd(y|x0̂(xt)). (2.80)

However, this approximation comes with a higher computational cost as the
gradients have to be computed through the score model. In the case of a
linear inverse problem with Gaussian noise, plkhd(y|x) = N (y;Ax, σ2

yIm),
Boys et al. [33] use a Gaussian approximation to p(x0|xt), enabling them to
analytically evaluate the time-dependent likelihood in Eqn. (2.78).

The Euler-Maruyama discretization usually needs about 1000 time-steps
to produce realistic results [91, 185, 190, 189]. Another sampling scheme,
referred to as denoising di�usion implicit models (DDIM), was proposed to
speed up the sampling process, requiring fewer iterations [185]. This sampling
process does not make use of the Euler-Maruyama discretization. Recently,
a new framework was proposed by Chung et al. [45] was developed to modify
the DDIM sampling update for linear inverse problems.

68



Bibliography

[1] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm
for boltzmann machines. Cognitive science, 9(1):147�169, 1985.

[2] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M.
Ogden. Pyramid methods in image processing. RCA engineer, 29(6):
33�41, 1984.

[3] J. Adler and O. Öktem. Solving ill-posed inverse problems using
iterative deep neural networks. Inverse Problems, 33(12):124007, 2017.

[4] J. Adler and O. Öktem. Learned primal-dual reconstruction. IEEE

transactions on medical imaging, 37(6):1322�1332, 2018.

[5] J. Adler and O. Öktem. Deep posterior sampling: Uncertainty
quanti�cation for large scale inverse problems. Medical Imaging with

Deep Learning, 2019.

[6] J. Adler, S. Lunz, O. Verdier, C.-B. Schönlieb, and O. Öktem. Task
adapted reconstruction for inverse problems. Inverse Problems, 38(7):
075006, 2022.

[7] F. Altekrüger, A. Denker, P. Hagemann, J. Hertrich, P. Maass, and
G. Steidl. Patchnr: learning from very few images by patch normalizing
�ow regularization. Inverse Problems, 39:125018, 2023.

[8] F. Altekrüger, P. Hagemann, and G. Steidl. Conditional generative
models are provably robust: Pointwise guarantees for bayesian inverse
problems. Transactions on Machine Learning Research, 2023. ISSN
2835-8856.

[9] B. Amos, L. Xu, and J. Z. Kolter. Input convex neural networks. In
International Conference on Machine Learning, pages 146�155. PMLR,
2017.

69



BIBLIOGRAPHY

[10] B. D. Anderson. Reverse-time di�usion equation models. Stochastic

Processes and their Applications, 12(3):313�326, 1982.

[11] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. On
instabilities of deep learning in image reconstruction and the potential
costs of ai. Proceedings of the National Academy of Sciences, 117(48):
30088�30095, 2020.

[12] L. Ardizzone, C. Lüth, J. Kruse, C. Rother, and U. Köthe. Guided
image generation with conditional invertible neural networks. arXiv

preprint arXiv:1907.02392, 2019.

[13] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative
adversarial networks. In International conference on machine learning,
pages 214�223. PMLR, 2017.

[14] C. Arndt, A. Denker, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth,
P. Maass, and J. Nickel. Invertible residual networks in the context of
regularization theory for linear inverse problems. Inverse Problems, 39
(10):104004, 2023.

[15] C. Arndt, S. Dittmer, N. Heilenkötter, M. Iske, T. Kluth, and J. Nickel.
Bayesian view on the training of invertible residual networks for solving
linear inverse problems. arXiv preprint arXiv:2307.10431, 2023.

[16] S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse
problems using data-driven models. Acta Numerica, 28:1�174, 2019.

[17] V. Y. Arsenin. On ill-posed problems. Russian Mathematical Surveys,
31(6):93, 1976.

[18] M. Asim, M. Daniels, O. Leong, A. Ahmed, and P. Hand. Invertible
generative models for inverse problems: mitigating representation error
and dataset bias. In International Conference on Machine Learning,
pages 399�409. PMLR, 2020.

[19] D. O. Baguer, J. Leuschner, and M. Schmidt. Computed tomography
reconstruction using deep image prior and learned reconstruction
methods. Inverse Problems, 36(9):094004, 2020.

[20] R. Barbano, �. Kereta, A. Hauptmann, S. R. Arridge, and B. Jin.
Unsupervised knowledge-transfer for learned image reconstruction.
Inverse Problems, 38(10):104004, 2022.

70



BIBLIOGRAPHY

[21] R. Barbano, J. Leuschner, J. Antorán, B. Jin, and J. M.
Hernández-Lobato. Bayesian experimental design for computed
tomography with the linearised deep image prior. arXiv preprint

arXiv:2207.05714, 2022.

[22] R. Barbano, J. Leuschner, M. Schmidt, A. Denker, A. Hauptmann,
P. Maass, and B. Jin. An educated warm start for deep
image prior-based micro ct reconstruction. IEEE Transactions on

Computational Imaging, 2022.

[23] R. Barbano, A. Denker, H. Chung, T. H. Roh, S. Arrdige,
P. Maass, B. Jin, and J. C. Ye. Steerable conditional di�usion for
out-of-distribution adaptation in imaging inverse problems. arXiv

preprint arXiv:2308.14409, 2023.

[24] G. Batzolis, J. Stanczuk, C.-B. Schönlieb, and C. Etmann. Conditional
image generation with score-based di�usion models. arXiv preprint

arXiv:2111.13606, 2021.

[25] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H.
Jacobsen. Invertible residual networks. In International conference on

machine learning, pages 573�582. PMLR, 2019.

[26] J. Behrmann, P. Vicol, K.-C. Wang, R. Grosse, and J.-H. Jacobsen.
Understanding and mitigating exploding inverses in invertible neural
networks. In International Conference on Arti�cial Intelligence and

Statistics, pages 1792�1800. PMLR, 2021.

[27] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis

and machine intelligence, 35(8):1798�1828, 2013.

[28] M. Benning and M. Burger. Modern regularization methods for inverse
problems. Acta numerica, 27:1�111, 2018.

[29] M. Benning, G. Gilboa, and C.-B. Schönlieb. Learning parametrised
regularisation functions via quotient minimisation. PAMM, 16(1):
933�936, 2016.

[30] R. v. d. Berg, L. Hasenclever, J. M. Tomczak, and M. Welling. Sylvester
normalizing �ows for variational inference. In 34th Conference on

Uncertainty in Arti�cial Intelligence, 2018.

71



BIBLIOGRAPHY

[31] D. M. Blei, A. Kucukelbir, and J. D. McAuli�e. Variational inference: A
review for statisticians. Journal of the American statistical Association,
112(518):859�877, 2017.

[32] N. M. Bo� and E. Vanden-Eijnden. Probability �ow solution of the
fokker�planck equation. Machine Learning: Science and Technology, 4
(3):035012, 2023.

[33] B. Boys, M. Girolami, J. Pidstrigach, S. Reich, A. Mosca, and O. D.
Akyildiz. Tweedie moment projected di�usions for inverse problems.
arXiv preprint arXiv:2310.06721, 2023.

[34] L. Bungert, R. Raab, T. Roith, L. Schwinn, and D. Tenbrinck.
Clip: Cheap lipschitz training of neural networks. In International

Conference on Scale Space and Variational Methods in Computer

Vision, pages 307�319. Springer, 2021.

[35] Z. Cai, J. Tang, S. Mukherjee, J. Li, C. B. Schönlieb, and X. Zhang.
Nf-ula: Langevin monte carlo with normalizing �ow prior for imaging
inverse problems. arXiv preprint arXiv:2304.08342, 2023.

[36] L. Calatroni, C. Cao, J. C. De Los Reyes, C.-B. Schönlieb, and
T. Valkonen. Bilevel approaches for learning of variational imaging
models. Variational Methods: In Imaging and Geometric Control, 18
(252):2, 2017.

[37] D. Chen, J. Tachella, and M. E. Davies. Equivariant imaging: Learning
beyond the range space. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 4379�4388, 2021.

[38] D. Chen, M. Davies, M. J. Ehrhardt, C.-B. Schönlieb, F. Sherry, and
J. Tachella. Imaging with equivariant deep learning: From unrolled
network design to fully unsupervised learning. IEEE Signal Processing

Magazine, 40(1):134�147, 2023.

[39] R. T. Chen and D. K. Duvenaud. Neural networks with cheap
di�erential operators. Advances in Neural Information Processing

Systems, 32, 2019.

[40] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud.
Neural ordinary di�erential equations. Advances in neural information

processing systems, 31, 2018.

72



BIBLIOGRAPHY

[41] R. T. Chen, J. Behrmann, D. K. Duvenaud, and J.-H. Jacobsen.
Residual �ows for invertible generative modeling. Advances in Neural

Information Processing Systems, 32, 2019.

[42] S. Chen and R. Gopinath. Gaussianization. Advances in neural

information processing systems, 13, 2000.

[43] D. Chu, I. Demir, K. Eichensehr, J. G. Foster, M. L. Green, K. Lerman,
F. Menczer, C. O'Connor, E. Parson, L. Ruthotto, et al. White
paper: Deep fakery�an action plan. Institute for Pure and Applied

Mathematics (IPAM), 2020.

[44] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. Di�usion
posterior sampling for general noisy inverse problems. arXiv preprint

arXiv:2209.14687, 2022.

[45] H. Chung, S. Lee, and J. C. Ye. Fast di�usion sampler for
inverse problems by geometric decomposition. arXiv preprint

arXiv:2303.05754, 2023.

[46] T. Cohen and M. Welling. Group equivariant convolutional networks.
In International conference on machine learning, pages 2990�2999.
PMLR, 2016.

[47] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative �ltering. IEEE Transactions

on image processing, 16(8):2080�2095, 2007.

[48] M. Z. Darestani, J. Liu, and R. Heckel. Test-time training can close
the natural distribution shift performance gap in deep learning based
compressed sensing. In International Conference on Machine Learning,
pages 4754�4776. PMLR, 2022.

[49] M. Dashti and A. M. Stuart. The bayesian approach to inverse
problems. arXiv preprint arXiv:1302.6989, 2013.

[50] J. C. De los Reyes, C.-B. Schönlieb, and T. Valkonen. Bilevel parameter
learning for higher-order total variation regularisation models. Journal
of Mathematical Imaging and Vision, 57(1):1�25, 2017.

[51] F. S. de Moura, S. Siltanen, and M. Juvonen. Helsinki deblur challenge
2021 (hdc20201) ipi special issue preface. Inverse Problems and

Imaging, 17(5):i�iii, 2023.

73



BIBLIOGRAPHY

[52] A. Denker, M. Schmidt, J. Leuschner, P. Maass, and J. Behrmann.
Conditional normalizing �ows for low-dose computed tomography
image reconstruction. Second workshop on Invertible Neural Networks,

Normalizing Flows, and Explicit Likelihood Models (ICML), 2020.

[53] A. Denker, M. Schmidt, J. Leuschner, and P. Maass. Conditional
invertible neural networks for medical imaging. Journal of Imaging,
7(11):243, 2021.

[54] T. Deveney, J. Stanczuk, L. M. Kreusser, C. Budd, and C.-B. Schönlieb.
Closing the ode-sde gap in score-based di�usion models through the
fokker-planck equation. arXiv preprint arXiv:2311.15996, 2023.

[55] P. Dhariwal and A. Nichol. Di�usion models beat gans on image
synthesis. Advances in neural information processing systems, 34:
8780�8794, 2021.

[56] A. G. Dimakis, A. Bora, D. Van Veen, A. Jalal, S. Vishwanath, and
E. Price. Deep generative models and inverse problems. Mathematical

Aspects of Deep Learning, page 400, 2022.

[57] L. Dinh, D. Krueger, and Y. Bengio. NICE: non-linear independent
components estimation. In 3rd International Conference on Learning

Representations, ICLR, 2015.

[58] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real
NVP. In 5th International Conference on Learning Representations,

ICLR, 2017.

[59] S. Dittmer. On Deep Learning Applied to Inverse Problems: A

Chicken-and-egg Problem. Dissertation, Universität Bremen, 2020.

[60] F. Draxler, P. Sorrenson, L. Zimmermann, A. Rousselot, and U. Köthe.
Free-form �ows: Make any architecture a normalizing �ow. arXiv

preprint arXiv:2310.16624, 2023.

[61] M. Du�, N. D. Campbell, and M. J. Ehrhardt. Regularising inverse
problems with generative machine learning models. Journal of

Mathematical Imaging and Vision, pages 1573�7683, 2023.

[62] B. Efron. Tweedie's formula and selection bias. Journal of the American
Statistical Association, 106(496):1602�1614, 2011.

74



BIBLIOGRAPHY

[63] B. Efron. Large-scale inference: empirical Bayes methods for

estimation, testing, and prediction, volume 1. Cambridge University
Press, 2012.

[64] H. W. Engl, K. Kunisch, and A. Neubauer. Convergence rates
for tikhonov regularisation of non-linear ill-posed problems. Inverse

problems, 5(4):523, 1989.

[65] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse

problems, volume 375. Springer Science & Business Media, 1996.

[66] L. eon Bottou. Online learning and stochastic approximations. Online
learning in neural networks, 17(9):142, 1998.

[67] C. Etmann, R. Ke, and C.-B. Schönlieb. iUNets: Learnable invertible
up- and downsampling for large-scale inverse problems. In IEEE 30th

International Workshop on Machine Learning for Signal Processing

(MLSP), pages 1�6, 2020.

[68] B. G. Fitzpatrick. Bayesian analysis in inverse problems. Inverse

problems, 7(5):675, 1991.

[69] M. Fornasier and H. Rauhut. Iterative thresholding algorithms. Applied
and Computational Harmonic Analysis, 25(2):187�208, 2008.

[70] R. G. Gavaskar and K. N. Chaudhury. On the proof of �xed-point
convergence for plug-and-play admm. IEEE Signal Processing Letters,
26(12):1817�1821, 2019.

[71] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data

analysis. Chapman and Hall/CRC, 1995.

[72] T. Germer, J. Robine, S. Konietzny, S. Harmeling, and T. Uelwer.
Limited-angle tomography reconstruction via deep end-to-end learning
on synthetic data. Applied Mathematics for Modern Challenges, 2023.

[73] D. Gilton, G. Ongie, and R. Willett. Model adaptation for inverse
problems in imaging. IEEE Transactions on Computational Imaging,
7:661�674, 2021.

[74] A. Golinski, M. Lezcano-Casado, and T. Rainforth. Improving
normalizing �ows via better orthogonal parameterizations. In ICML

Workshop on Invertible Neural Networks and Normalizing Flows, 2019.

75



BIBLIOGRAPHY

[75] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[76] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139�144, 2020.

[77] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and
D. Duvenaud. FFJORD: free-form continuous dynamics for scalable
reversible generative models. In 7th International Conference on

Learning Representations, ICLR, 2019.

[78] K. Gregor and Y. LeCun. Learning fast approximations of sparse
coding. In Proceedings of the 27th international conference on

international conference on machine learning, pages 399�406, 2010.

[79] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved training of wasserstein gans. Advances in neural

information processing systems, 30, 2017.

[80] E. Haber and L. Tenorio. Learning regularization functionals�a
supervised training approach. Inverse Problems, 19(3):611, 2003.

[81] J. Hadamard. Lectures on cauchy's problem in linear partial di�erential
equations. Press. New Haven, 1923.

[82] P. Hagemann and S. Neumayer. Stabilizing invertible neural networks
using mixture models. Inverse Problems, 37(8):085002, 2021.

[83] Y. Han, J. Yoo, H. H. Kim, H. J. Shin, K. Sung, and J. C.
Ye. Deep learning with domain adaptation for accelerated
projection-reconstruction mr. Magnetic resonance in medicine, 80(3):
1189�1205, 2018.

[84] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The

elements of statistical learning: data mining, inference, and prediction,
volume 2. Springer, 2009.

[85] A. Hauptmann and J. Poimala. Model-corrected learned primal-dual
models for fast limited-view photoacoustic tomography. arXiv preprint
arXiv:2304.01963, 2023.

76

http://www.deeplearningbook.org


BIBLIOGRAPHY

[86] J. He, Y. Wang, and J. Ma. Radon inversion via deep learning. IEEE
transactions on medical imaging, 39(6):2076�2087, 2020.

[87] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770�778, 2016.

[88] R. Heckel and P. Hand. Deep decoder: Concise image representations
from untrained non-convolutional networks. In 7th International

Conference on Learning Representations, ICLR, 2019.

[89] L. Helminger, M. Bernasconi, A. Djelouah, M. Gross, and C. Schroers.
Generic image restoration with �ow based priors. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 334�343, 2021.

[90] G. E. Hinton. Training products of experts by minimizing contrastive
divergence. Neural computation, 14(8):1771�1800, 2002.

[91] J. Ho, A. Jain, and P. Abbeel. Denoising di�usion probabilistic models.
Advances in neural information processing systems, 33:6840�6851,
2020.

[92] E. Hoogeboom, R. Van Den Berg, and M. Welling. Emerging
convolutions for generative normalizing �ows. In International

conference on machine learning, pages 2771�2780. PMLR, 2019.

[93] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural
autoregressive �ows. In International Conference on Machine Learning,
pages 2078�2087. PMLR, 2018.

[94] M. F. Hutchinson. A stochastic estimator of the trace of the
in�uence matrix for laplacian smoothing splines. Communications in

Statistics-Simulation and Computation, 18(3):1059�1076, 1989.

[95] A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical
models by score matching. Journal of Machine Learning Research, 6
(4), 2005.

[96] S. Io�e and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International

conference on machine learning, pages 448�456. pmlr, 2015.

77



BIBLIOGRAPHY

[97] A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir.
Robust compressed sensing mri with deep generative priors. Advances
in Neural Information Processing Systems, 34:14938�14954, 2021.

[98] B. Jin, Z. Zhou, and J. Zou. On the approximation of bi-lipschitz maps
by invertible neural networks. arXiv preprint arXiv:2308.09367, 2023.

[99] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep
convolutional neural network for inverse problems in imaging. IEEE

transactions on image processing, 26(9):4509�4522, 2017.

[100] R. M. Johnson. The minimal transformation to orthonormality.
Psychometrika, 31(1):61�66, 1966.

[101] Z. Kadkhodaie and E. Simoncelli. Stochastic solutions for linear inverse
problems using the prior implicit in a denoiser. Advances in Neural

Information Processing Systems, 34:13242�13254, 2021.

[102] Z. Kadkhodaie and E. P. Simoncelli. Solving linear inverse problems
using the prior implicit in a denoiser. In NeurIPS Workshop on Deep

Learning and Inverse Problems, 2020.

[103] J. Kaipio and E. Somersalo. Statistical and computational inverse

problems, volume 160. Springer Science & Business Media, 2006.

[104] B. Kawar, N. Elata, T. Michaeli, and M. Elad. Gsure-based di�usion
model training with corrupted data. arXiv preprint arXiv:2305.13128,
2023.

[105] P. Kidger. On neural di�erential equations. Dissertation, University of
Oxford, 2022.

[106] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[107] D. P. Kingma and P. Dhariwal. Glow: Generative �ow with invertible
1x1 convolutions. Advances in neural information processing systems,
31, 2018.

[108] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd
International Conference on Learning Representations, ICLR, 2014.

78



BIBLIOGRAPHY

[109] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling.
Semi-supervised learning with deep generative models. Advances in

neural information processing systems, 27, 2014.

[110] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and
M. Welling. Improved variational inference with inverse autoregressive
�ow. Advances in neural information processing systems, 29, 2016.

[111] A. Klenke. Probability theory: a comprehensive course. Springer Science
& Business Media, 2013.

[112] F. Knoll, T. Murrell, A. Sriram, N. Yakubova, J. Zbontar, M. Rabbat,
A. Defazio, M. J. Muckley, D. K. Sodickson, C. L. Zitnick, et al.
Advancing machine learning for mr image reconstruction with an
open competition: Overview of the 2019 fastmri challenge. Magnetic

resonance in medicine, 84(6):3054�3070, 2020.

[113] I. Kobyzev, S. J. Prince, and M. A. Brubaker. Normalizing �ows: An
introduction and review of current methods. IEEE transactions on

pattern analysis and machine intelligence, 43(11):3964�3979, 2020.

[114] K. Kothari, A. Khorashadizadeh, M. de Hoop, and I. Dokmani¢.
Trumpets: Injective �ows for inference and inverse problems. In
Uncertainty in Arti�cial Intelligence, pages 1269�1278. PMLR, 2021.

[115] J. Kruse, G. Detommaso, U. Köthe, and R. Scheichl. Hint:
Hierarchical invertible neural transport for density estimation and
bayesian inference. In Proceedings of the AAAI Conference on Arti�cial

Intelligence, volume 35, pages 8191�8199, 2021.

[116] S. Kullback and R. A. Leibler. On information and su�ciency. The

annals of mathematical statistics, 22(1):79�86, 1951.

[117] J. Latz. On the well-posedness of bayesian inverse problems.
SIAM/ASA Journal on Uncertainty Quanti�cation, 8(1):451�482,
2020.

[118] R. Laumont, V. D. Bortoli, A. Almansa, J. Delon, A. Durmus, and
M. Pereyra. Bayesian imaging using plug & play priors: when langevin
meets tweedie. SIAM Journal on Imaging Sciences, 15(2):701�737,
2022.

79



BIBLIOGRAPHY

[119] Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang. A tutorial
on energy-based learning. Predicting structured data, 1(0), 2006.

[120] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-supervised
nets. In Arti�cial intelligence and statistics, pages 562�570. Pmlr, 2015.

[121] J. Leuschner, M. Schmidt, P. S. Ganguly, V. Andriiashen, S. B. Coban,
A. Denker, D. Bauer, A. Hadjifaradji, K. J. Batenburg, P. Maass, et al.
Quantitative comparison of deep learning-based image reconstruction
methods for low-dose and sparse-angle ct applications. Journal of

Imaging, 7(3):44, 2021.

[122] J. Le'Clerc Arrastia, N. Heilenkötter, D. Otero Baguer,
L. Hauberg-Lotte, T. Boskamp, S. Hetzer, N. Duschner, J. Schaller,
and P. Maass. Deeply supervised unet for semantic segmentation to
assist dermatopathological assessment of basal cell carcinoma. Journal
of imaging, 7(4):71, 2021.

[123] T. Lindeberg. Scale-space theory in computer vision, volume 256.
Springer Science & Business Media, 2013.

[124] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow
matching for generative modeling. In The Eleventh International

Conference on Learning Representations, ICLR, 2022.

[125] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3431�3440, 2015.

[126] A. K. Louis, P. Maaÿ, and A. Rieder. Wavelets. Springer-Verlag, 1998.

[127] F. Lucka. Bayesian inversion in biomedical imaging. Dissertation,

Westfälische Wilhelms-Universität Münster, 2014.

[128] S. Lunz, O. Öktem, and C.-B. Schönlieb. Adversarial regularizers in
inverse problems. Advances in neural information processing systems,
31, 2018.

[129] S. Lunz, A. Hauptmann, T. Tarvainen, C.-B. Schonlieb, and S. Arridge.
On learned operator correction in inverse problems. SIAM Journal on

Imaging Sciences, 14(1):92�127, 2021.

80



BIBLIOGRAPHY

[130] J. Lyu, Z. Chen, C. Feng, W. Cun, S. Zhu, Y. Geng, Z. Xu, and
C. Yongwei. Para-c�ows: ck-universal di�eomorphism approximators as
superior neural surrogates. Advances in Neural Information Processing

Systems, 35:28829�28841, 2022.

[131] C. C. Margossian and D. M. Blei. Amortized variational inference:
When and why? arXiv preprint arXiv:2307.11018, 2023.

[132] Y. Marzouk, T. Moselhy, M. Parno, and A. Spantini. Sampling
via measure transport: An introduction. Handbook of uncertainty

quanti�cation, 1:2, 2016.

[133] M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural
networks for inverse problems in imaging: A review. IEEE Signal

Processing Magazine, 34(6):85�95, 2017.

[134] T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers. Learning
proximal operators: Using denoising networks for regularizing inverse
imaging problems. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1781�1790, 2017.

[135] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of

applied cryptography. CRC press, 2018.

[136] C. A. Metzler, A. Mousavi, R. Heckel, and R. G. Baraniuk.
Unsupervised learning with stein's unbiased risk estimator. arXiv

preprint arXiv:1805.10531, 2018.

[137] M. Mirza and S. Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[138] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral
normalization for generative adversarial networks. In 6th International

Conference on Learning Representations, ICLR, 2018.

[139] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine
learning. MIT press, 2018.

[140] V. A. Morozov. Methods for Solving Incorrectly Posed Problems,
volume 1. Springer, 1984.

[141] F. Mosteller and J. W. Tukey. Data analysis, including statistics.
Handbook of social psychology, 2:80�203, 1968.

81



BIBLIOGRAPHY

[142] S. Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Öktem, and C.-B.
Schönlieb. Learned convex regularizers for inverse problems. arXiv

preprint arXiv:2008.02839, 2020.

[143] S. Mukherjee, A. Hauptmann, O. Öktem, M. Pereyra, and C.-B.
Schönlieb. Learned reconstruction methods with convergence
guarantees: a survey of concepts and applications. IEEE Signal

Processing Magazine, 40(1):164�182, 2023.

[144] K. P. Murphy. Probabilistic machine learning: an introduction. MIT
press, 2022.

[145] V. Nair and G. E. Hinton. Recti�ed linear units improve restricted
boltzmann machines. In Proceedings of the 27th international

conference on machine learning (ICML-10), pages 807�814, 2010.

[146] F. Natterer. The mathematics of computerized tomography. SIAM,
2001.

[147] R. Nickl. On bayesian inference for some statistical inverse problems
with partial di�erential equations. Bernoulli News, 24(2):5�9, 2017.

[148] J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. Xing,
and J. Schneider. Transformation autoregressive networks. In
International Conference on Machine Learning, pages 3898�3907.
PMLR, 2018.

[149] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and
R. Willett. Deep learning techniques for inverse problems in imaging.
IEEE Journal on Selected Areas in Information Theory, 1(1):39�56,
2020.

[150] R. Orozco, A. Siahkoohi, G. Rizzuti, T. van Leeuwen, and F. J.
Herrmann. Adjoint operators enable fast and amortized machine
learning based bayesian uncertainty quanti�cation. In Medical Imaging

2023: Image Processing, volume 12464, pages 357�367. SPIE, 2023.

[151] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan. Normalizing �ows for probabilistic modeling
and inference. The Journal of Machine Learning Research, 22(1):
2617�2680, 2021.

82



BIBLIOGRAPHY

[152] N. Parikh, S. Boyd, et al. Proximal algorithms. Foundations and

trends® in Optimization, 1(3):127�239, 2014.

[153] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Advances in
neural information processing systems, 32, 2019.

[154] M. Pereyra. Proximal markov chain monte carlo algorithms. Statistics
and Computing, 26:745�760, 2016.

[155] M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y.
Tourneret, A. O. Hero, and S. McLaughlin. A survey of stochastic
simulation and optimization methods in signal processing. IEEE

Journal of Selected Topics in Signal Processing, 10(2):224�241, 2015.

[156] J.-C. Pesquet, A. Repetti, M. Terris, and Y. Wiaux. Learning
maximally monotone operators for image recovery. SIAM Journal on

Imaging Sciences, 14(3):1206�1237, 2021.

[157] L. S. Pontrjagin, E. Mishchenko, V. Boltyanskii, and R. Gamkrelidze.
The mathematical theory of optimal processes. Interscience, 1962.

[158] S. J. Prince. Understanding Deep Learning. MIT Press, 2023. URL
http://udlbook.com.

[159] P. Putzky and M. Welling. Recurrent inference machines for solving
inverse problems. arXiv preprint arXiv:1706.04008, 2017.

[160] Z. Ramzi, B. Remy, F. Lanusse, J.-L. Starck, and P. Ciuciu. Denoising
score-matching for uncertainty quanti�cation in inverse problems. In
34th Conference on Neural Information Processing Systems, Workshop

on Deep Learning and Inverse Problems, 2020.

[161] M. Ranzato, Y.-L. Boureau, S. Chopra, and Y. LeCun. A uni�ed
energy-based framework for unsupervised learning. In Arti�cial

Intelligence and Statistics, pages 371�379. PMLR, 2007.

[162] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do imagenet
classi�ers generalize to imagenet? In International conference on

machine learning, pages 5389�5400. PMLR, 2019.

83

http://udlbook.com


BIBLIOGRAPHY

[163] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. Depristo, J. Dillon,
and B. Lakshminarayanan. Likelihood ratios for out-of-distribution
detection. Advances in neural information processing systems, 32, 2019.

[164] D. Rezende and S. Mohamed. Variational inference with normalizing
�ows. In International conference on machine learning, pages
1530�1538. PMLR, 2015.

[165] A. Rieder. Keine Probleme mit inversen Problemen: eine Einführung

in ihre stabile Lösung. Springer-Verlag, 2013.

[166] O. Rippel and R. P. Adams. High-dimensional probability estimation
with deep density models, 2013.

[167] R. Rojas and R. Rojas. The backpropagation algorithm. Neural

networks: a systematic introduction, pages 149�182, 1996.

[168] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image

Computing and Computer-Assisted Intervention�MICCAI 2015: 18th

International Conference, Munich, Germany, October 5-9, 2015,

Proceedings, Part III 18, pages 234�241. Springer, 2015.

[169] L. Rosasco, A. Caponnetto, E. Vito, F. Odone, and U. Giovannini.
Learning, regularization and ill-posed inverse problems. Advances in

Neural Information Processing Systems, 17, 2004.

[170] S. Roth and M. J. Black. Fields of experts: A framework for learning
image priors. In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR'05), volume 2, pages 860�867.
IEEE, 2005.

[171] N. Roux, M. Schmidt, and F. Bach. A stochastic gradient method with
an exponential convergence rate for �nite training sets. Advances in

neural information processing systems, 25, 2012.

[172] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):
259�268, 1992.

[173] L. Ruthotto and E. Haber. An introduction to deep generative
modeling. GAMM-Mitteilungen, 44(2):e202100008, 2021.

84



BIBLIOGRAPHY

[174] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen. Improved techniques for training gans. Advances in neural

information processing systems, 29, 2016.

[175] S. Särkkä and A. Solin. Applied stochastic di�erential equations,
volume 10. Cambridge University Press, 2019.

[176] J. Scarlett, R. Heckel, M. R. Rodrigues, P. Hand, and Y. C. Eldar.
Theoretical perspectives on deep learning methods in inverse problems.
IEEE journal on selected areas in information theory, 3(3):433�453,
2022.

[177] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen.
Variational methods in imaging, volume 167. Springer, 2009.

[178] T. Schuster, B. Kaltenbacher, B. Hofmann, and K. S. Kazimierski.
Regularization methods in Banach spaces, volume 10. Walter de
Gruyter, 2012.

[179] J. Schwab, S. Antholzer, and M. Haltmeier. Deep null space learning
for inverse problems: convergence analysis and rates. Inverse Problems,
35(2):025008, 2019.

[180] A. Siahkoohi, G. Rizzuti, M. Louboutin, P. Witte, and F. Herrmann.
Preconditioned training of normalizing �ows for variational inference
in inverse problems. In Third Symposium on Advances in Approximate

Bayesian Inference, 2021.

[181] A. Siahkoohi, G. Rizzuti, R. Orozco, and F. J. Herrmann. Reliable
amortized variational inference with physics-based latent distribution
correction. Geophysics, 88(3):R297�R322, 2023.

[182] K. Simonyan and A. Zisserman. Very deep convolutional networks
for large-scale image recognition. In 3rd International Conference on

Learning Representations, ICLR, 2015.

[183] I. Singh, R. Barbano, Z. Kereta, B. Jin, K. Thielemans, and S. Arridge.
3d pet-dip reconstruction with relative di�erence prior using a
sirf-based objective. Fully3D, 2023.

[184] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics.

85



BIBLIOGRAPHY

In International conference on machine learning, pages 2256�2265.
PMLR, 2015.

[185] J. Song, C. Meng, and S. Ermon. Denoising di�usion implicit models.
In International Conference on Learning Representations, ICLR, 2021.

[186] Y. Song. Learning to generate data by estimating gradients of the data
distribution. Dissertation, Stanford University, 2022.

[187] Y. Song and S. Ermon. Generative modeling by estimating gradients
of the data distribution. Advances in neural information processing

systems, 32, 2019.

[188] Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum likelihood
training of score-based di�usion models. Advances in Neural

Information Processing Systems, 34:1415�1428, 2021.

[189] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole. Score-based generative modeling through stochastic
di�erential equations. In 9th International Conference on Learning

Representations, ICLR, 2021.

[190] Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in
medical imaging with score-based generative models. In International

Conference on Learning Representations, ICLR, 2022.

[191] C. M. Stein. Estimation of the mean of a multivariate normal
distribution. The annals of Statistics, pages 1135�1151, 1981.

[192] M. Stone. Cross-validatory choice and assessment of statistical
predictions. Journal of the royal statistical society: Series B

(Methodological), 36(2):111�133, 1974.

[193] A. M. Stuart. Inverse problems: a bayesian perspective. Acta numerica,
19:451�559, 2010.

[194] H. Sun and K. L. Bouman. Deep probabilistic imaging:
Uncertainty quanti�cation and multi-modal solution characterization
for computational imaging. In Proceedings of the AAAI Conference on

Arti�cial Intelligence, volume 35, pages 2628�2637, 2021.

[195] J. Sun, H. Li, Z. Xu, et al. Deep admm-net for compressive sensing
mri. Advances in neural information processing systems, 29, 2016.

86



BIBLIOGRAPHY

[196] E. G. Tabak and C. V. Turner. A family of nonparametric
density estimation algorithms. Communications on Pure and Applied

Mathematics, 66(2):145�164, 2013.

[197] A. Tarantola, B. Valette, et al. Inverse problems= quest for
information. Journal of geophysics, 50(1):159�170, 1982.

[198] L. Tenorio. Statistical regularization of inverse problems. SIAM review,
43(2):347�366, 2001.

[199] T. Teshima, I. Ishikawa, K. Tojo, K. Oono, M. Ikeda, and
M. Sugiyama. Coupling-based invertible neural networks are universal
di�eomorphism approximators. Advances in Neural Information

Processing Systems, 33:3362�3373, 2020.

[200] T. Tieleman. Training restricted boltzmann machines using
approximations to the likelihood gradient. In Proceedings of the 25th

international conference on Machine learning, pages 1064�1071, 2008.

[201] A. N. Tikhonov et al. On the stability of inverse problems. In Dokl.

akad. nauk sssr, volume 39, pages 195�198, 1943.

[202] J. M. Tomczak and M. Welling. Improving variational auto-encoders
using householder �ow. arXiv preprint arXiv:1611.09630, 2016.

[203] I. To²i¢ and P. Frossard. Dictionary learning. IEEE Signal Processing

Magazine, 28(2):27�38, 2011.

[204] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In
Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 9446�9454, 2018.

[205] D. Van Veen, A. Jalal, M. Soltanolkotabi, E. Price, S. Vishwanath, and
A. G. Dimakis. Compressed sensing with deep image prior and learned
regularization. arXiv preprint arXiv:1806.06438, 2018.

[206] V. Vapnik. The nature of statistical learning theory. Springer science
& business media, 1999.

[207] M. Vauhkonen, J. Kaipio, E. Somersalo, and P. Karjalainen. Electrical
impedance tomography with basis constraints. Inverse problems, 13
(2):523, 1997.

87



BIBLIOGRAPHY

[208] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play
priors for model based reconstruction. In 2013 IEEE global conference

on signal and information processing, pages 945�948. IEEE, 2013.

[209] C. Villani et al. Optimal transport: old and new, volume 338. Springer,
2009.

[210] P. Vincent. A connection between score matching and denoising
autoencoders. Neural computation, 23(7):1661�1674, 2011.

[211] X. Wei, H. van Gorp, L. Gonzalez-Carabarin, D. Freedman, Y. C.
Eldar, and R. J. van Sloun. Deep unfolding with normalizing �ow
priors for inverse problems. IEEE Transactions on Signal Processing,
70:2962�2971, 2022.

[212] J. Whang, Q. Lei, and A. Dimakis. Solving inverse problems with
a �ow-based noise model. In International Conference on Machine

Learning, pages 11146�11157. PMLR, 2021.

[213] D. R. Wilson and T. R. Martinez. The general ine�ciency of
batch training for gradient descent learning. Neural networks, 16(10):
1429�1451, 2003.

[214] C. Winkler, D. Worrall, E. Hoogeboom, and M. Welling. Learning
likelihoods with conditional normalizing �ows. arXiv preprint

arXiv:1912.00042, 2019.

[215] C. Zhang, C. Zhang, M. Zhang, and I. S. Kweon. Text-to-image
di�usion model in generative ai: A survey. arXiv preprint

arXiv:2303.07909, 2023.

[216] S. Zhao, J. Song, and S. Ermon. Towards deeper understanding of
variational autoencoding models. arXiv preprint arXiv:1702.08658,
2017.

[217] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen. Image
reconstruction by domain-transform manifold learning. Nature, 555
(7697):487�492, 2018.

[218] S. C. Zhu, Y. Wu, and D. Mumford. Filters, random �elds and
maximum entropy (frame): Towards a uni�ed theory for texture
modeling. International Journal of Computer Vision, 27:107�126, 1998.

88



BIBLIOGRAPHY

[219] E. Zisselman and A. Tamar. Deep residual �ow for out of distribution
detection. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 13994�14003, 2020.

[220] D. Zoran and Y. Weiss. From learning models of natural image
patches to whole image restoration. In 2011 international conference

on computer vision, pages 479�486. IEEE, 2011.

89





Part II

Papers





Contents

Conditional Normalizing Flows for Low-Dose Computed Tomography

Image Reconstruction

Alexander Denker, Maximilian Schmidt, Johannes Leuschner, Peter Maass, Jens
Behrmann
Second workshop on Invertible Neural Networks, Normalizing Flows, and Explicit

Likelihood Models (ICML), 2020.

Conditional Invertible Neural Networks for Medical Imaging

Alexander Denker, Maximilian Schmidt, Johannes Leuschner, Peter Maass
Journal of Imaging, 7(11):243, 2021. DOI: 10.3390/jimaging7110243

PatchNR: Learning From Very Few Images by Patch Normalizing Flow

Regularization

Fabian Altekrüger, Alexander Denker, Paul Hagemann, Johannes Hertrich, Peter
Maass, Gabriele Steidl
Inverse Problems, 39(6):064006, 2023. DOI: 10.1088/1361-6420/acce5e

Model-based Deep Learning Approaches to the Helsinki Tomography

Challenge 2022

Clemens Arndt, Alexander Denker, Sören Dittmer, Johannes Leuschner, Judith
Nickel, Maximilian Schmidt
Applied Mathematics for Modern Challenges, 2023. DOI: 10.3934/ammc.2023007

Steerable Conditional Di�usion for Out-of-Distribution Adaptation in

Imaging Inverse Problems

Riccardo Barbano, Alexander Denker, Hyungjin Chung, Tae Hoon Roh, Simon
Arrdige, Peter Maass, Bangti Jin, Jong Chul Ye
submitted to AAAI, under review.

Score-Based Generative Models for PET Image Reconstruction

Imraj RD Singh, Alexander Denker, Riccardo Barbano, �eljko Kereta, Bangti Jin,
Kris Thielemans, Peter Maass, Simon Arridge
submitted to MELBA, under review.

93

https://doi.org/10.3390/jimaging7110243
https://doi.org/10.1088/1361-6420/acce5e
https://doi.org/10.3934/ammc.2023007



	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Thesis Overview

	I Background
	Inverse Problems and Deep Learning
	Inverse Problems
	Ill-posedness and Regularization Theory
	Statistical Inverse Problems

	Deep Learning
	Statistical Learning Theory
	Feedforward Neural Networks
	Training a Neural Network
	Convolutional Neural Networks

	Generative Modeling
	Setting
	Density estimation as an ill-posed problem
	Fitting the Model
	Challenges
	Implicit Generative Modeling

	Application to Inverse Problems
	Learned Reconstruction
	Learned Regularizers
	Learning the Posterior
	Untrained Models
	Challenges


	Invertible Neural Networks
	Normalizing Flows
	Finite Normalizing Flows
	Parametrize Forward or Inverse?
	Sampling Error
	Instability

	Conditional Normalizing Flows
	Continuous Normalizing Flows

	Construction of Invertible Networks
	Linear Flow Layers
	Coupling Layers
	Application to Images
	Conditional Coupling Layers

	Invertible Residual Layers
	Enforcing the Lipschitz constraint
	Jacobian determinant
	Matrix Determinant Lemma
	Conditional Residual Layers

	Invertible Up- and Downsampling
	Normalization
	Multi-scale Architecture

	Application to Inverse Problems
	Variational Inference
	Learning the Prior
	Learning the Posterior
	Operator Learning

	Score-based Diffusion Models
	Connection to Continuous Normalizing Flows
	Application to Inverse Problems


	Bibliography

	II Papers

